

PROCEDINGS INTERNATIONAL CONFERENCE

TRANSFORMATION TO SUSTAINABLE LIVESTOCK PRODUCTION

2025

October 17th, 2025 **Vietnam National University of Agriculture**

www.vkli.vnua.edu.vn

PROCEEDINGS

2025 INTERNATIONAL CONFERENCE TRANSFORMATION TO SUSTAINABLE LIVESTOCK PRODUCTION

October 17th, 2025 Vietnam National University of Agriculture

www.vkli.vnua.edu.vn

PREFACE

This is the International Conference to be organized within the framework of the KOICA Project on "Higher Education Program for Vietnam National University of Agriculture to Enhance Human Resources Specialized in Animal Husbandry of Vietnam". The conference took place at Vietnam National University of Agriculture, Hanoi, Vietnam on October 17, 2025. It is a great privilege for us to present the Proceedings of this conference to the authors and delegates of the event. We hope that you will feel useful and inspiring.

Our higher education project is a project which funded by the Korean Government through KOICA (Korea International Cooperation Agency) from 2021 to 2030 with the project budget is \$12,700,000. The project covers many activities which focus on enhancing human resources in Animal Science of Vietnam, including organizing an international conference every year in which the topic is diverse. This year, the topic would be Animal nutrition and Feed technology.

The purpose of this conference was to contribute to the understanding of the technologies and innovations in livestock production.

The conference has about 150 participants from 4 countries including South Korea, Australia, Indonesia and Vietnam; and more than 30 papers have been submitted from universities and research institutes of different countries in order to be considered for presentation at the conference.

We would like to take this opportunity to thank KOICA and Ministry of Agriculture and Rural Development for their support; the invited speakers for their acceptance to give keynote presentations on their respective fields of expertise; the participants, especially those of you coming from abroad, for joining us and sharing your valuable experience and opinions. We bless you all a fulfilling experience and very pleasant stay in our country.

The Organizing Committee

2025 INTERNATIONAL CONFERENCE ON TRANSFORMATION TO SUSTAINABLE LIVESTOCK PRODUCTION

ORGANIZER

KOICA-VNUA Project

SPONSOR

Korean Government

SCIENTIFIC COMMITTEE

Prof. Dr. Soo Ki Kim Konkuk University, Korea

Prof. Dr. Nguyen Xuan Trach

Vietnam National University of Agriculture

Prof. Dr. Vu Dinh Ton

Vietnam National University of Agriculture

Assoc. Prof. Bui Quang Tuan

Vietnam National University of Agriculture

Dr. Oh Young Kyoon Konkuk University, Korea

Assoc. Prof. Do Duc Luc

Vietnam National University of Agriculture

Assoc. Prof. Tran Hiep

Vietnam National University of Agriculture

Dr. Bui Huy Doanh

Vietnam National University of Agriculture

CONTACT

KOICA-VNUA Project

Vietnam National University of Agriculture

Trau Quy, Gia Lam, Hanoi, Vietnam

www.vkli.vnua.edu.vn

ORGANIZING COMMITTEE

Prof. Dr. Nguyen Thi Lan

Vietnam National University of Agriculture

Dr. Bui Huy Doanh

Vietnam National University of Agriculture

Prof. Dr. Soo Ki Kim Konkuk University, Korea

Dr. Oh Young Kyoon Konkuk University, Korea

Dr. Nguyen Thi Vinh

Vietnam National University of Agriculture

Assoc. Prof. Ha Xuan Bo

Vietnam National University of Agriculture

MSc. Le Thi Bich Lien

Vietnam National University of Agriculture

SECRETARIAT

Nguyen Thuong Thuong

MSc. Trinh The Hung

Vietnam National University of Agriculture

Dr. Vo Thi Co

MSc. Nguyen Thi Hai Yen

Vu Van Manh & Nguyen Duc Linh

[VKLI]

CONFERENCE PROGRAM OF INTERNATIONAL SYMPOSIUM ON ANIMAL NUTRITION AND FEED TECHNOLOGY

Hanoi, October 17th, 2025

Time	Contents	
8:30-9:00	Registration	
9:00-9:10	Opening speech	
	Morning session	
	Chairman: Prof. Vu Dinh Ton & Prof. Lee Jun-Heon	
	State management of livestock breeding	
9:10-9:40	Dr. Pham Thi Kim Dung	
	Department of Animal Breeding, MAE	
	Recent research progress for the Korean native chicken	
9:40-10:10	Prof. Lee Jun-Heon	
	President of KSAST, Korea	
	Overview of H'Mong cattle - a valuable livestock genetic resource	
10:10-10:40	Prof. Nguyen Xuan Trach	
	Vietnam National University of Agriculture	
10:40-10:50	Tea-break	
	Building climate-smart buffalo enterprises through precision	
	farming, artificial intelligence, and genomic selection	
10:50-11:10	Dr. Mehar Khatkar	
	Davies Livestock Research Centre, School of Animal and Veterinary	
	Sciences, Adelaide University, Australia	
	Pig production in Vietnam: Improvement of performance by	
11 10 11 20	quantitative genetics and genomic information	
11:10-11:30	Assoc. Prof. Dr. Do Duc Luc	
	Vietnam National University of Agriculture	
11:30-13:00	Lunch	
	Afternoon Session	
	Chairman: Prof. Nguyen Xuan Trach & Prof. Chung Ki-Yong	
	National Hanwoo breeding and genetic improvement system of	
	Korea	
13:30-13:50	Roh Seung-Hee	
	Deputy General Manager Livestock Support Dept., National	
	Agricultural Cooperative Federation, Korea	
	Husbandry and feeding systems for H'Mong cattle in Cao Bang	
13:50-14:10	province	
	Dr. Hoang Xuan Truong	

Time	Contents	
	National Institute of Animal Science	
	Current and prospects of precision management in south Korea	
14:10-14:30	beef production	
14.10-14.30	Prof. Chung Ki-Yong	
	Korea National University of Agriculture and Fisheries, Korea	
	Lumpy skin disease from a localized infection to a global threat	
14:30-14:50	Dr. Farhid Hemmatzadeh	
	The University of Adelaide Australia	
14:50-15:10 Tea break		
	MicroRNA profile and levels in colostrum and calf blood before	
15:10-15:30	and after receiving different colostrum sources	
13.10-13.30	Dr. Do Thi Hue	
	The University of Adelaide Australia	
	Plant extract-loading Fe3O4 nanosystems to inhibit viruses for	
15:30-15:50	sustainable livestock production	
13:30-13:30	Le Thi Thu Huong	
	Vietnam National University of Agriculture	
	Fermentative and nutritive quality of fruit by-product silage	
15:50-16:10	Dinh Thi Yen	
13:30-16:10	Vietnam National University of Agriculture, PhD student at	
	Universitas Gadjah Mada, Indonesia	
16:10-17:00	Closing ceremony	
17:00-20:00	Gala dinner	

CONTENTS

PREFACEiii
PART I. ABTRACTS1
GENOMIC APPROACHES TO THE CONSERVATION AND IMPROVEMENT OF
KOREAN NATIVE CHICKENS2
OVERVIEW OF H'MONG CATTLE - A VALUABLE LIVESTOCK GENETIC
RESOURCE3
A STUDY ON HANWOO (KOREAN NATIVE CATTLE) IMPROVEMENT SYSTEM4
MICRORNA PROFILE AND LEVELS IN COLOSTRUM AND CALF BLOOD BEFORE
AND AFTER RECEIVING DIFFERENT COLOSTRUM SOURCES5 MODELING GROWTH CURVES TO ESTIMATE LIVE WEIGHT, WEIGHT GAIN, AND
OPTIMAL SLAUGHTER AGE IN INDIGENOUS HUONG PIGS6
EFFECTS OF DRINKING WATER SOURCES ON GROWTH PERFORMANCE AND
CARCASS TRAITS OF DUCKS
EFFECT OF BANANA PEEL POWDER ON GROWTH PERFORMANCE, INTESTINAL
MORPHOLOGY, CARCASS YIELD, AND MEAT QUALITY OF BROILER CHICKENS
8
PART II. PRESENTATION9
1. STATE MANAGEMENT OF LIVESTOCK BREEDING10
2-RECENT RESEARCH PROGRESS FOR THE KOREAN NATIVE CHICKEN26
3. OVERVIEW OF H'MONG CATTLE - A VALUABLE LIVESTOCK GENETIC
RESOURCE53 4. BUILDING CLIMATE-SMART BUFFALO ENTERPRISES THROUGH PRECISION
FARMING, ARTIFICIAL INTELLIGENCE, AND GENOMIC SELECTION
QUANTITATIVE GENETICS AND GENOMIC INFORMATION92 6. NATIONAL HANWOO BREEDING AND GENETIC IMPROVEMENT SYSTEM OF
KOREA
7. HUSBANDRY AND FEEDING SYSTEMS FOR H'MONG CATTLE IN CAO BANG
PROVINCE116
8. CURRENT AND PROSPECTS OF PRECISION MANAGEMENT IN SOUTH KOREA
BEEF PRODUCTION
9. LUMPY SKIN DISEASE FROM A LOCALIZED INFECTION TO A GLOBAL
THREAT
BEFORE AND AFTER RECEIVING DIFFERENT COLOSTRUM SOURCES176
11. PLANT EXTRACT-LOADING FE3O4 NANOSYSTEMS TO INHIBIT VIRUSES FOR
SUSTAINABLE LIVESTOCK PRODUCTION

KOICA – VNUA PROJECT

PART I. ABTRACTS

Vietnam-Korea Livestock Higher Education Research Institute (VKLI) CREI RM. 110-111, Vietnam National University of Agriculture +843-5949-3697 ww.vkli.vnua.

GENOMIC APPROACHES TO THE CONSERVATION AND IMPROVEMENT OF KOREAN NATIVE CHICKENS

Minjun Kim¹, Eunjin Cho², Jaewon Kim¹, Roshani Fernando¹, Jinhyeong Kim¹ & Jun Heon Lee^{1, 2*}

¹ Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea

² Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Korea

ABSTRACT

Understanding the genomic basis of indigenous livestock is essential for both conservation and sustainable improvement. Korean native chickens (KNCs), although representing a small fraction of the poultry industry in Korea, are distinguished by their unique meat quality, robustness, and adaptability. Recent genomic studies have investigated their genetic diversity, evolutionary history, and economically important traits. High-density SNP arrays and population structure analyses have clarified the distinct identity of KNC lines, while runs of homozygosity provided insights into inbreeding, conservation progress, and functional loci. Selection signature analyses identified candidate genes related to growth, metabolism, reproduction, and immune function, reflecting line-specific adaptation. Genome-wide association studies further identified variants associated with taste-active compounds, fatty acid composition, and growth traits, offering a foundation for genomic selection. Moreover, research on disease-related genes such as major histocompatibility complex B genes has documented substantial genetic variability in KNCs, establishing important genomic resources for subsequent studies on avian immunity and pathogen response. Together, these findings highlight KNCs as a valuable reservoir of genetic variation with implications for both conservation and breeding. More broadly, the genomic insights obtained from KNCs provide a cautious yet informative model for indigenous livestock worldwide, demonstrating how genomic tools can support sustainable breeding programs that balance biodiversity preservation with productivity.

Keywords: Korean native chickens, Genetic diversity, Selection signatures, Association study, Disease-resistance genes.

OVERVIEW OF H'MONG CATTLE - A VALUABLE LIVESTOCK GENETIC RESOURCE

Nguyen Xuan Trach

Faculty of Animal Science, Vietnam National University of Agriculture Email: nxtrach@vnua.edu.vn

ABSTRACT

H'Mong cattle are considered to have several advantages over other local Yellow cattle in Vietnam, serving as a valuable livestock genetic resource. This breed is not only a primary livelihood but also a source of pride deeply tied to the cultural identity of the H'Mong people. Several research and development projects have been undertaken to utilize this cattle breed. This paper reviews available research findings to provide an overview of the breed's origins, actual strengths and weaknesses, and proposes sustainable solutions for its utilization.

Keywords: H'Mong cattle, genetic resource, meat productivity, beef quality

A STUDY ON HANWOO (KOREAN NATIVE CATTLE) IMPROVEMENT SYSTEM

Seunghee Roh¹, Bongseo Choi¹, Mina Park², Taejung Choi², Choongil Jo³, Jungmi Hwang³, and Jaehyeong Shin⁴*

¹National Agricultural Cooperative Federation Agribusiness Group,16, Saemunan-ro, Jung-gu, Seoul, 04516, Republic of Korea; jinsweet@nonghyup.com

²National Institute of Animal Science, 114, Sinbang 1-gil, Seonghwan-eup, Seobuk-gu, Cheonan-si, Chungcheongnam-do, 31000, Republic of Korea

³Hanwoo Genetic Improvement Center, National Agricultural Cooperative Federation Agribusiness Group, 691, Haeun-ro, Unsan-myun, Seosan, Chungcheongnam-do, 31948, Republic of Korea ⁴Academic Research Professor, Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Seoul, 05029, Republic of Korea*

ABSTRACT

Hanwoo is a culturally and emotionally important livestock in Korea. Historically, it served as a key means of transportation and draft animal during the agrarian period, and with industrialization, it was improved as a beef breed. Hanwoo is known for its calm temperament, tolerance to low-quality feed, and relatively high content of oleic acid, an unsaturated fatty acid. The Hanwoo population declined significantly after the Korean War, but government policies and the roles of improvement agencies laid the foundation for population recovery and genetic improvement. The improvement of Hanwoo began with a registration program in 1969. After about 57 years of breeding efforts, progeny-tested steers showed an annual increase in yearling weight of 4.47 kg, reaching 399.7 kg, and in 24-month body weight of 7.98 kg, reaching 751.5 kg. Genetic progress in carcass traits was observed with annual improvements of 4.2548 kg in carcass weight, 3.4472 cm² in eye muscle area, a decrease of 0.071 mm in backfat thickness, and an increase of 0.0881 points in marbling score. These results are attributed to the selection of superior sires through contemporary and progeny testing combined with genomic selection technologies.

Keywords: Hanwoo, performance test, progeny test, genomic selection, young bull, proven bull.

MICRORNA PROFILE AND LEVELS IN COLOSTRUM AND CALF BLOOD BEFORE AND AFTER RECEIVING DIFFERENT COLOSTRUM SOURCES

Do T. Hue,^{1,2*} Kiro Petrovski,¹ John L. Williams, ^{1,3} Tong Chen,¹ Kelly Ren,¹ Wai Yee Low,¹ Thien D. Van,¹ Cynthia D. K. Bottema,¹

¹ Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia

² Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam

³ Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy

Corresponding author: * Do T. Hue, Email: hue.do@adelaide.edu.au

ABSTRACT

MicroRNAs (miRNAs) are short non-coding RNA, but they play critical roles in regulatory gene expression and are involved in various biological processes of animals. In this study, miRNA profile was analysed in colostrum and calf blood before and after colostrum ingestion. Dam colostrum was fed to their own calves (Group A) and foster calves (Group B) within 4 hours after birth and every 12 hours after birth. Pooled colostrum that collected from multiple cows days 0 – 4 postpartum was used as the first feed for Group C calves, then these calves were fed bulk tank milk from many cows after 5 days postpartum. Total RNA from calf blood within 2 hours after birth and before receiving colostrum (day 0), and 24 hours after feeding colostrum (day 1) was extracted using miRNeasy Mini Kit, sequenced by Illumina-compatible Next-Generation Sequencing, and then analysed by using a bioinformatics pipeline. Levels of miRNA were validated in colostrum and calf blood (days 0 and 1) by the reverse transcription polymerase chain reaction (RT-qPCR). The large number of miRNAs were detected at high levels in calf blood at both days 0 and 1, which was generally 4-fold higher than in colostrum. Total of 303 miRNAs detected in colostrum (296 known and 7 novel miRNAs), whereas 1,198 miRNAs (1,004 known and 194 novel) were identified in calf blood. A similar miRNA profile was found in dam and pooled colostrum with 76% of the miRNAs expressed in dam colostrum also found in pooled colostrum, however, only four miRNAs had significantly higher levels in dam than in pooled colostrum.

94% miRNAs were detected in the calf blood at both days 0 and 1, and only 22 miRNAs had significantly different levels between the two time points. Of these 22 miRNAs, three miRNAs had higher levels at day 1 after two colostrum feeds (let-7a-3p, miR-1260b and miR-12042), however, after validating by RT-qPCR, only miR-1260b showed higher levels in calf blood day 1 compared to day 0. In addition, these three miRNA levels in the calf blood were not correlated with the levels in the corresponding colostrum by both RNA seq and RT-qPCR results. These findings suggest that miRNAs in the colostrum are not likely to be absorbed by the calves to any great extent.

MODELING GROWTH CURVES TO ESTIMATE LIVE WEIGHT, WEIGHT GAIN, AND OPTIMAL SLAUGHTER AGE IN INDIGENOUS HUONG PIGS

Ha Xuan Bo¹, Nguyen Thuc Anh², Nguyen Thi Thanh Van³, Hoang Thi Mai⁴, Nguyen Thi Huong³*

¹Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Vietnam ²K66CNTYC, Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Vietnam

³National Institute of Animal Sciences, Hanoi, Vietnam
⁴Institute of Agriculture and Resources, Vinh University
Corresponding Authors: Nguyen Thi Huong email: huongty34@gmail.com

ABSTRACT

The Huong pig is an indigenous Vietnamese breed known for its adaptability and meat quality, making it important for sustainable smallholder farming. This study aimed to determine the most suitable nonlinear model to describe growth patterns in Huong pigs and estimate live weight, weight gain, and optimal slaughter age. A total of 240 pigs (120 castrated males and 120 females) were monitored monthly from birth to 9 months of age. Eight nonlinear growth models (von Bertalanffy, Bridges, Janoschek, Gompertz, Logistic, Lopez, Richards, and Weibull) were fitted to body weight data using nonlinear regression analysis in R. Goodness-of-fit was assessed based on R², Akaike's Information Criterion (AIC), Bayesian Information Criterion (BIC), and standard error of regression (SER). The Gompertz model provided the best fit for both sexes, with high R² values (>99%) and low AIC and SER. Based on the Gompertz function, the optimal slaughter age was estimated at 9.42 months (51.45 kg) for castrated males and 9.93 months (53.68 kg) for females. These findings support the application of growth curve modeling for improving the economic efficiency of Huong pig production and may guide breeding and management strategies for other native breeds.

Keywords: Bodyweight, breeding, Huong pigs, growth curve, slaughter age

EFFECTS OF DRINKING WATER SOURCES ON GROWTH PERFORMANCE AND CARCASS TRAITS OF DUCKS

Nguyen Thi Phuong Giang¹, Bui Huy Doanh¹, Bui Thi To Nga², Ha Xuan Bo¹, Nguyen Thi Chau Giang¹, Cu Thi Thien Thu¹, Nguyen Cong Oanh¹, Nguyen Van Thong¹, Nguyen Thi Vinh^{1*}

¹Faculty of Animal Science, Vietnam National University of Agriculture ²Faculty of Veterinary Medicine, Vietnam National University of Agriculture *Corresponding author: ntvinh@vnua.edu.vn

ABSTRACT

This study was conducted to evaluate the effects of drinking water sources on the growth performance, carcass yield and quality of commercial Cherry Valley ducks raised in the coastal area of Thai Thuy (formerly Thai Binh province). A total 225 Cherry Valley ducks (81 males and 144 females) were randomly assigned to 3 treatments corresponding to different drinking water sources (filtered water, tap water, and pond water), with three replicates of 25 ducks each. Results showed that water source significantly influenced final body weight and average daily gain, with ducks receiving filtered or tap water performing better than those given pond water; however, weight gain, feed intake, and feed conversion ratio were not affected. Carcass yield was generally unaffected by drinking water source, except for thigh weight, while meat quality traits such as pH and color varied notably across different water sources. Sex had a clear effect on growth and meat quality, with male ducks showing faster growth and higher thigh pH, while females exhibited greater breast water loss. The interaction between water source and sex also influenced final body weight, growth rate, and several meat quality traits (L*, a*, pH15, b*).

Keywords: Drinking water source, growth performance, carcass traits

EFFECT OF BANANA PEEL POWDER ON GROWTH PERFORMANCE, INTESTINAL MORPHOLOGY, CARCASS YIELD, AND MEAT QUALITY OF BROILER CHICKENS

Duong Thu Huong[#], Tran Bich Phuong[#], Nguyen Van Thong, Dao Thi Ngoc Anh, Bui Huy Doanh, Nguyen Thi Phuong Giang, Nguyen Thi Vinh*

Faculty of Animal Science, Vietnam National University of Agriculture
These authors contributed equally to this work
*Corresponding author: Nguyen Thi Vinh
Tel.: +84 966 799 296 Email: ntvinh@vnua.edu.vn

ABSTRACT

Banana peel is a readily available agricultural by-product with potential use in poultry feeding. This study investigated the effects of banana peel powder (BPP) on growth performance, intestinal morphology, carcass yield and meat quality of broilers. A total of 126 one-day-old chicks were randomly assigned to three dietary treatments: control (BPP0, corn – soybean basal diet), BPP7 (7% banana peel), and BPP10 (10% banana peel), with three replicates of 14 birds each, and reared for 35 days. Survival rate was not significantly different among groups (P > 0.05), although BPP10 showed the highest value (96.97%). The inclusion of 7% and 10% in the diets did not significantly affect initial weight, average daily gain, feed intake, or feed conversion ratio (P > 0.05). However, broilers fed the 10% BPP diet showed numerically higher final weight and weight gain, with both parameters reaching statistical significance (P = 0.05). There are no statistically significant differences were observed in villus height, crypt depth, or the villus height to crypt depth ratio. Carcass traits were not influenced by diet (P > 0.05). However, several meat quality traits were significantly affected (P < 0.05). In thigh meat, yellowness (b*) decreased in VC7 and VC10. In breast meat, lightness (L*) increased and yellowness (b^*) decreased with banana peel inclusion (P < 0.05). In conclusion, inclusion of 10% banana peel powder tended to enhance growth and altered meat color without adverse effects on FCR or carcass yield, supporting its potential as a sustainable feed ingredient in broiler production.

Keywords: Banana peel, broiler performance, agricultural by-products, sustainable poultry production.

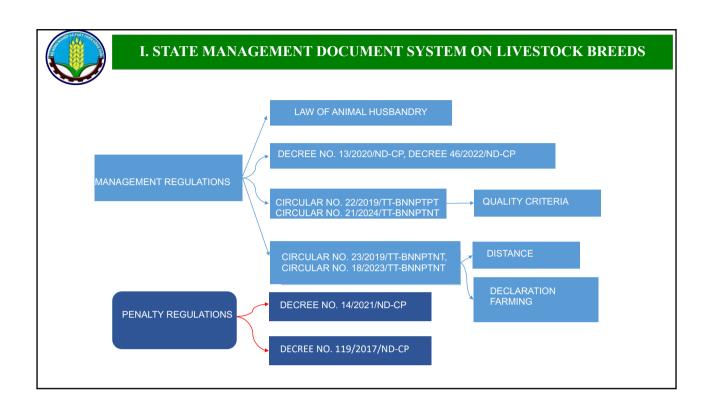
KOICA – VNUA PROJECT

PART II. PRESENTATION

Vietnam-Korea Livestock Higher Education Research Institute (VKLI) CREI RM. 110-111, Vietnam National University of Agriculture +843-5949-3697 ww.vkli.vnua.edu.vn

1. STATE MANAGEMENT OF LIVESTOCK BREEDING

DR. PHAM THI KIM DUNG
DEPARTMENT OF ANIMAL HEALTH AND PRODUCTION,
MAE



DISCUSSION REPORT

STATE MANAGEMENT OF LIVESTOCK BREEDING

Hanoi, October 17, 2025

I SYSTEM OF STATE MANAGEMENT DOCUMENTS ON LIVESTOCK BREEDS II BREEDING QUALITY AND LIVESTOCK BREEDING MANAGEMENT III LIVESTOCK DEVELOPMENT STRATEGY TO 2030

	I. STATE MANAGEMENT DOCUMENT SYSTEM ON LIVESTOCK BREEDS	
	Content	As provided in the article, clause
1	The State support for preserving genetic resources of rare and precious livestock breeds and indigenous breeds	Clause 1, Article 4, Law of Animal Husbandry
2	The State supports livestock recovery activities after natural disasters and epidemics.	Clause 2, Article 4, Law of Animal Husbandry
3	High technology, advanced technology, new technology and high - tech products are prioritized and encouraged to be applied in the field of livestock breeding.	Clause 1, Article 7, Law of Animal Husbandry
4	International cooperation in exchanging high-yield, high- quality livestock breeds that adapt to climate change.	Clause 3 , Article 10, Law of Animal Husbandry
5	Building a Database on Livestock Breeds	Clause 2, Article 11, Law of Animal Husbandry; Article 4 of Circular 20/2019/TT-BNNPTNT
6	It is strictly forbidden to destroy or appropriate livestock genetic resources.	Clause 5, Article 12, Law of Animal Husbandry
7	Prohibition of illegal export of genetic resources of precious and rare livestock breeds	Clause 6, Article 12, Law of Animal Husbandry

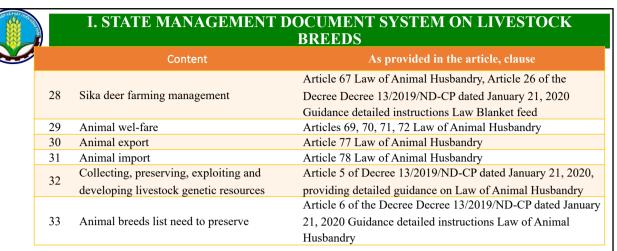
I. STATE MANAGEMENT DOCUMENT SYSTEM ON LIVESTOCK BREEDS

	Content	As provided in the article, clause	
8	Management genetic resources	Clause 1, Article 13 of Law of Animal Husbandry	
9	Collecting, preserving, exploiting and developing livestock genetic resources	Article 14, Law of Animal Husbandry	
10	Exchange of genetic resources of precious and rare livestock breeds	Article 15, Article 16, Law of Animal Husbandry, regulations; Article 3, 4 Circular 22/2019/TT-BNNPTNT dated November 30, 2019 guiding a number of articles of Law of Animal Husbandry on management of livestock breeds and breed products	
11	Genetically modified animals and animal cloning	Article 17 of the Law of Animal Husbandry	
12	Breeds and livestock breed products circulating on the market	Article 18 of the Law of Animal Husbandry	

I. STATE MANAGEMENT DOCUMENT SYSTEM ON LIVESTOCK BREEDS

	Content	As provided in the article, clause
13	Livestock breeds that need to be preserved and banned to export	Article 19, Law of Animal Husbandry
	Import of livestock breeds and	Article 20, Law of Animal Husbandry; Article 5 of the
14	livestock breed related products	Circular Circular 22/2019/TT-BNNPTNT
	Export and international exchange of	Article 21, Law of Animal Husbandry; Article 6 of the
15	livestock breeds and livestock breed products	Circular Circular 22/2019/TT-BNNPTNT
16	Conditions for production and	Article 22, Law of Animal Husbandry
	purchase livestock breeds	

Traction of the state of the st	I. STATE MANAGEMENT DOCUMENT SYSTEM ON LIVESTOCK BREEDS	
	Content	As provided in the article, clause
17	Production, sale of semen, embryos, breeding eggs, larvae, artificial insemination services, and embryo transfer; Regulations on Certificate of artificial insemination and embryo transfer training.	Article 23, Law of Animal Husbandry; Article 3 of the Circular Circular 23/2019/TT-BNNPTNT
18	Quality requirements of male and female breeds; Mandatory quality standards for male and female breeds	Article 24 Law of Animal Husbandry; Article 7 of the Circular Circular 22/2019/TT- BNNPTNT
19	Rights and obligations of business on producing and trading in livestock breeds	Article 25 Law of Animal Husbandry
20	Animal breed testing	Article 26, 27, Law of Animal Husbandry
21	Animal breed inspection	Article 28, Law of Animal Husbandry
22	Naming new livestock breeds	Article 29 Law of Animal Husbandry


I. STATE MANAGEMENT DOCUMENT SYSTEM ON LIVESTOCK BREEDS

	Content	As provided in the article, clause
23	Recognition of new livestock breeds and lines	Article 30 Law of Animal Husbandry
24	Rights and obligations of livestock breed testing facilities	Article 31 Law of Animal Husbandry
25	Management bird's nest production	Article 64 Law of Animal Husbandry, Article 25 of the Decree Decree 13/2019/ND-CP
26	Honey bee management	Article 65, Law of Animal Husbandry
27	Dog and cat management	Article 66, Law of Animal Husbandry

I. STATE MANAGEMENT DOCUMENT SYSTEM ON LIVESTOCK BREEDS

	Content	As provided in the article, clause
34	List of livestock breeds prohibited to export	Article 7 of the Decree Decree 13/2019/ND-CP
35	Update livestock breeds need to be preserved	Article 8 of the Decree Decree 13/2019/ND-CP
36	List of other animals allowed to be raised	Article 17 of the Decree Decree 13/2019/ND-CP
37	Regulations on import of live animals	Article 29 of the Decree Decree 13/2019/ND-CP
38	Import, production and supply of livestock breeding products	Clause 3, Article 1 of the Decree Decree 46/2022/ND-CP

39

I. STATE MANAGEMENT DOCUMENT SYSTEM ON LIVESTOCK **BREEDS**

Content

Appraisal for granting license to exchange genetic resources of livestock breeds, 850,000 VND 01 genetic source/time.

Appraisal for granting license to import male breeds, semen, and embryos of livestock breeds for the first time, 250,000 VND 01 breed/time.

Appraisal for granting license to export livestock breeds and livestock breed products in the list of livestock breeds banned from export for scientific research, exhibitions, and advertising purposes 850,000 VND 01 breed/time.

Recognition of new livestock breeds and lines, 750,000 VND 01 breed/time

As provided in the article, clause

Information Circular No. 24/2021/TT-BTC dated March 31, 2021 Regulations on collection levels, collection, payment, management and use of fees in animal husbandry

II. BREEDING QUALITY AND LIVESTOCK BREEDS MANAGEMENT

Foreign sows, crossbred foreign x foreign (80%);

Domestic sows, crossbred foreign x domestic (20%)

sows: ~ 3.0 million (10.4% of total herd), GGP, GP: 137 thousand heads (4.5% of total herd) -

(GGP 15% and GP accounts for 85%)

Boar breeding pigs: 74.9 thousand, AI (53%) - 39.7 thousand heads; DI (47%) -35.2 thousand heads

a. Commercial pork (foreign x foreign) ADG from 750-950 grams/head/day TLN from 54-60 %; FCR from 2.3 -2.5 kg

b . Commercial pork group (domestic and foreign) ADG from 550-700 grams/head/day; TLN from 48-52%; high quality meat FCR from 2.6 - 2.8 kg .

II. BREEDING QUALITY AND LIVESTOCK BREEDS MANAGEMENT

The high quality indigenous chicken breeds: Survival rate 90-95%. Egg productivity increased 25.4-53.8%, FCR decreased 10-15%.

Lines of colored feathers LV, VP1, VP2, VP3, VP4, VP5, TP1, TP2, TP3, TP4, TN1, TN2 and TN3

BW 8 weeks old: (female-male) from 902.7-1161.4 grams, Egg productivity until 64 weeks old: 156-186 eggs, FCR /10 eggs:1.89 - 2.5 kg.

II. BREEDING QUALITY AND LIVESTOCK BREEDS MANAGEMENT

The egg-line are Egypt, HA1, HA2, VCN/BT-AG1, GT1, GT2, GT3, VCN-G15, RA, GT, GT12, VCZ16

Egg production: 200 - 269 eggs/hen/72 weeks old, FCR /10 eggs from 1.73 - 2.30 kg

Egg-strain duck breeds:

TC: 280-290 eggs/hen/year, Co breed: 250-260 eggs/hen/year

Dual-purpose duck breeds: PT duck, 2 lines of Sea duck. production from 240 - 250 eggs/hen/year.

Meat duck breeds: duck lines T 5, T6, V5, V6, V52, V57, TS132, TS142, CT1, CT2, CT3, CT4,

male duck 3.69 - 3.72 kg, Female duck: 3.33 – 3.34 kg (24 weeks old) TP duck 49 days old reaches 3.2-3.5kg

II. BREEDING QUALITY AND LIVESTOCK BREEDS MANAGEMENT

Musk duck V5, V7, VS, RT9, RT11

Four ostrich lines BV1, BV2, BV3, BV4

Boer-VCN goat: BW75-80 kg/male, 65-70 kg/female, meat yield : 50-55%; Saanen dairy goats 2.8-3.2 liters/day.

Suffort-VCN, **Dopper-VCN sheep** and cross breed have 20-25% higher productivity than Phan Rang sheep.

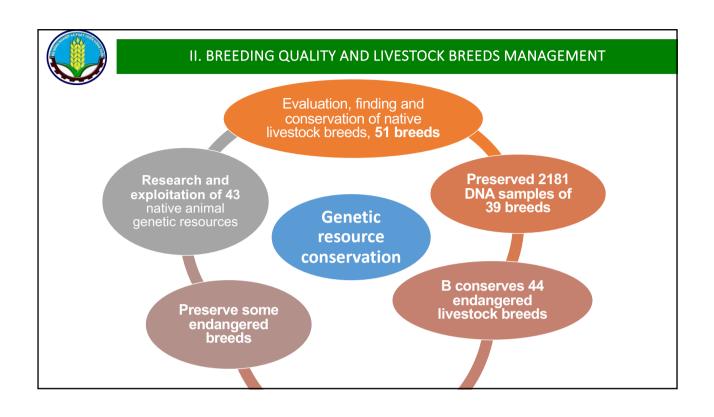
II. BREEDING QUALITY AND LIVESTOCK BREEDS MANAGEMENT

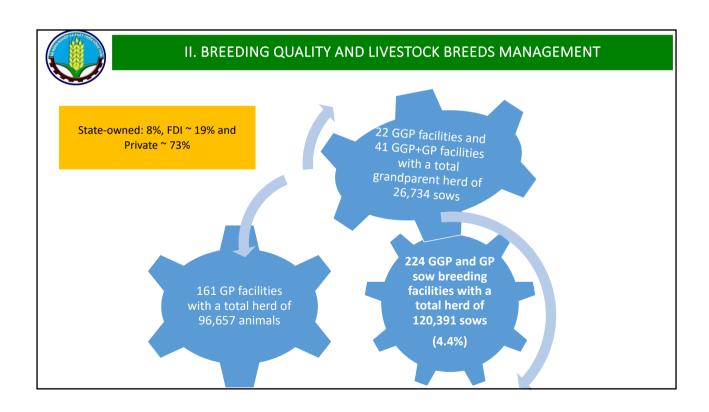
Crossbred dairy cow: milk yield of 5200 - 5500 kg/cycle. Purebred HF cows have been raised in most regions of the country.

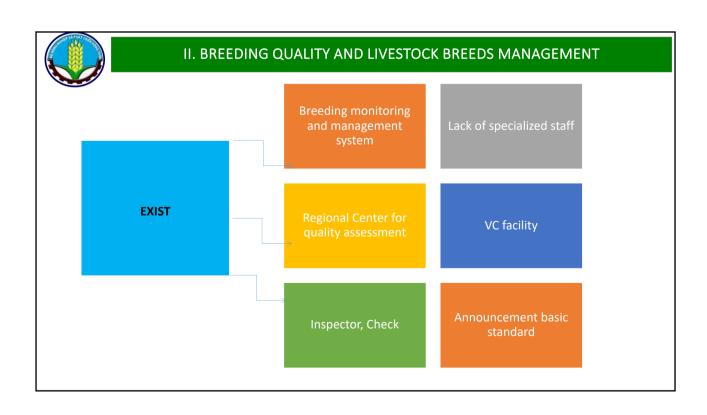
Crossbred beef cattle: Zebu crossbred: fattening cattle gain 800 g/head/day.
Crossbreeding between BBB and Vietnamese cow creates high-yielding hybrids.

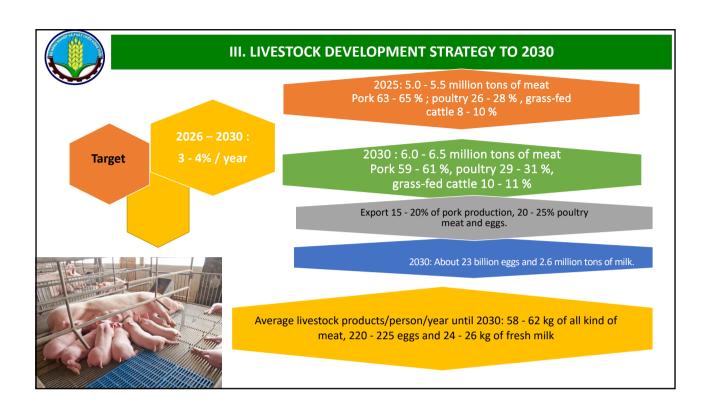
The BW of mature buffalo reaches over 800 kg/male, over 600 kg for female buffalo.

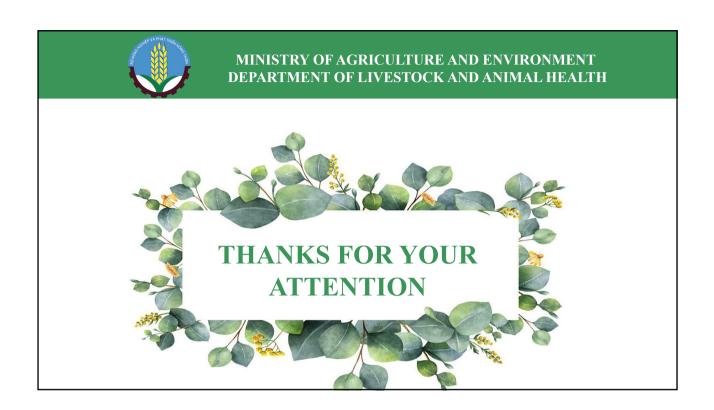
II. BREEDING QUALITY AND LIVESTOCK BREEDS MANAGEMENT


Foreign bee *Apis mellifera* . Create hybrid bee colonies for average honey yield of 40-45kg/hive/year




Silkworm breed:


Creating a white cocoon dual-system silkworm breed with a yield of 90% compared to the cocoon yield of Chinese dual-system silkworms.



2. RECENT RESEARCH PROGRESS FOR THE KOREAN NATIVE CHICKEN

PROF. LEE JUN-HEON PRESIDENT OF KSAST, KOREA

Presentation outline

- Genetic diversity analyses in Korean native chickens
- A study on the QTL and GWAS of Korean native chickens
- Selection signature studies in Korean native chickens
- IV MHC diversity study in Korean native chickens

Introduce myself

+ Jun Heon Lee, PhD

Professor in **Animal Molecular Genetics**College of Agriculture and Life Sciences **Chungnam National University**, Daejeon, Korea

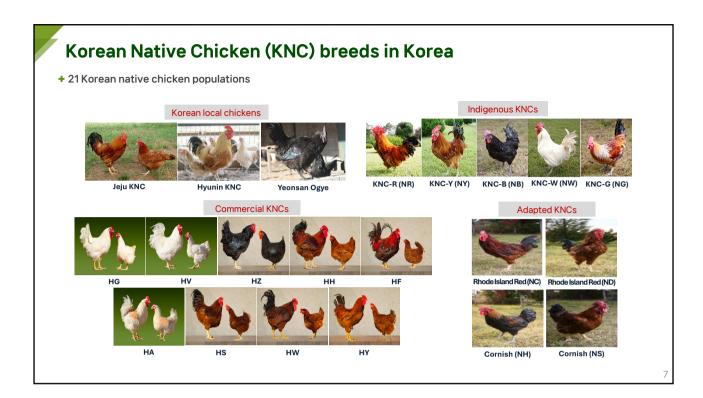
- Bachelors & Master's Degree in the Department of Animal Science, at Chungnam National Univ, Korea (1987-1995)
- PhD degree (Majoring in Animal Molecular Genetics) in the Department of Animal Science at the Univ of Sydney, Australia (1997-2001)
- Dean for College of Agriculture and Life Sciences, at Chungnam National University (2023-2025)
- Post Doc in the Department of Animal Science at Univ of Illinois, USA (2001-2002)
- JSPS (Japanese Society for Promotion of Science) Research Fellow in the Kobe University, Japan
- Visiting Research Fellow in the Dept of Pathology at the Univ of Michigan, USA (2009)
- President of Korean Society of Animal Science and Technology and Korean Society of Animal Breeding and Genetics,
 President for ISAG2025 LOC (Local Organising Committee)

.

Previous research projects in CNU, Korea

- 1. 2003-2007: BioGreen 21 (Development of economic trait genes of Korean native chickens using proteomics)
- 2008-2010: FTA Project (Research on the production of high-quality chicken for domestic poultry genetic resources)
- 3. 2011-2013: FTA Project (Research on the development of domestic breeds using national and private seeds and the enhancement of marketability)
- 4. 2011-2014: Next-generation BioGreen 21 Project (Research on genome selection technology for the development of high-quality meat breeds)
- 5. 2013-2021: GSP Golden Seed Project
 - (Step 1: Development of large-scale analysis of genetic markers of the collected samples and the mating lines) (Step 2: Development of a new native breed and establishment of a breeding system Development of molecular markers for identification of native chickens and establishment of verification system)
- 6. 2014-2015: Agenda Project (Development of domestic seed stocks for white meat duck and industrialization of native duck: early termination due to Al outbreak)
- 7. 2019-2021: Basic research by the National Research Foundation of Korea (MHC haplotype analysis related to immunity and disease resistance of chickens)
- 8. 2022-2024: Internationalization Foundation Project (Deep learning modeling for genomic prediction to increase accuracy of breeding value in Korean and Israeli cattle populations)
- 2023-2024: Development of a National Breeding Platform Project (Development of technology for the trait improvement based on the livestock dip-data (Establishment of genomic selection for Korean native ducks))
- Mostly Poultry Genetics using native chicken breeds
- Some collaboration Projects for Korean native pigs (not listed)

4

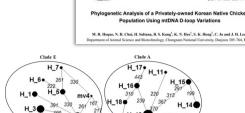

Ongoing research projects in CNU, Korea

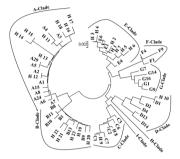
- 1. 1. 2021-2025: 2025 Advanced Technology for Addressing Livestock Issues (Development of genomic selection technology to improve meat quality Woorimatdag)
- 2. 2022-2025: Basic research by the National Research Foundation of Korea (MHC haplotype analysis related to immunity and disease resistance of Asian chicken population)
- 3. 2025-2027: National Breeding Platform Development for Public Benefit (Development of an Al-based breeding platform for improving egg production traits using livestock deep data)
- 4. 2025-2027: National Breeding Platform Development for Public Benefit (Construction of deep-data-based growth and meat quality databases)
- 5. 2025-2028: Mid-Career Research Program by the National Research Foundation of Korea (Establishment of a foundation for breeding disease-resistant chicken lines through analysis of MHC gene surface expression levels)
- Basic researches for chicken MHC, candidate genes, QTLs
- Development of commercially available new native chicken breeds

5

Research directions for Korean Native Chickens (KNC)

- 1. Growth and Production Traits
- · Slower growth rate compared to commercial broilers
- · Smaller body size, however adapted to local environment
- 2. Meat Quality and Culinary Value
- · Superior meat texture and flavor
- · High protein content with lower fat levels
- 3. Health and Disease Resistance
- Potentially higher resistance to common poultry diseases
- · Valuable genetic resource for breeding programs
- 4. Importance for Research
- · Preserving genetic diversity of native chicken populations
- · Basis for improving disease resistance and meat quality through breeding

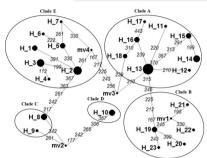


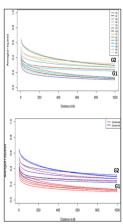


1. Genetic diversity analyses and breed identification using Korean native chickens

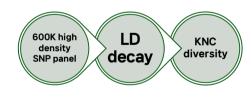
Chapter 1 Genetic Diversity Analyses in Korean native chicken

+ KNC diversity analysis with mtDNA D-loop diversity




Figure 2. Identification of phylogenetic tree through network analysis of D-loop variations in Korean native chicken populations.

O PLOS ONE


- It was confirmed that KNC populations belong to five of the nine phylogenetic groups of Red Jungle Fowl.
- · Most KNC populations are classified into A, B, and E groups, which are distributed across the Eurasian continent and these results suggest that KNC populations have diverse maternal origins.

Chapter 1 Genetic Diversity Analyses in Korean native chicken

+ SNP (Single Nucleotide Polymorphism)-based diversity analysis: using Illumina 600K chip

Figure 1. LD decay analysis results (/2 values of Correlation between the closest markers)

The results indicated that commercial native chickens have less calculated LD (average, r^2 = 0.13-0.26) and purebred native chickens have more calculated LD (average, $r^2 = 0.24-0.37$) across the entire genome.

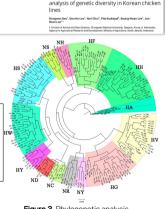
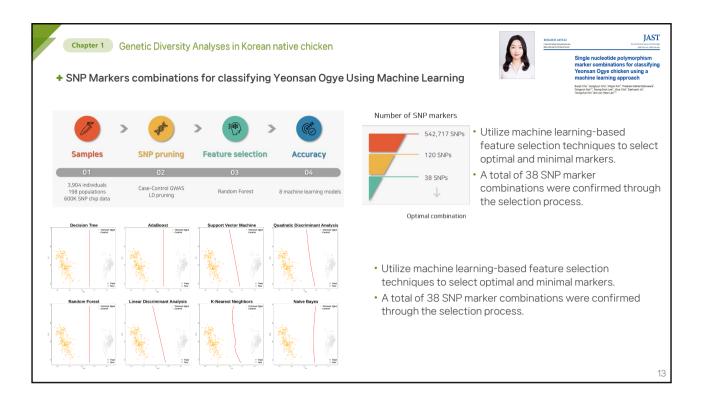


Figure 3. Phylogenetic analysis results for the 14 native chicken lines

- + SYNBREED genetic diversity study
- Comparison analysis with 600K chip data

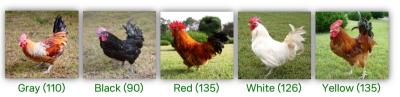


Dr. Steffan Weigend

1

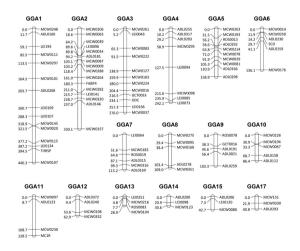
* SYNBREED genetic diversity study (Cont.) * Worldwide chicken SYNBREED data (174 breeds) + KNC chicken data (6 breeds) ** Worldwide chicken SYNBREED data (174 breeds) + KNC chicken data (6 breeds) ** Fig. 1. Results of principal component analysis of 600K single necessitie polymorphism groups data. Note that Yeonson Ogye (within the red circle) is distinct from the other Korean and 2 sub-clusters with a multi-continent.

2. A study on the QTL and GWAS of Korean native chickens

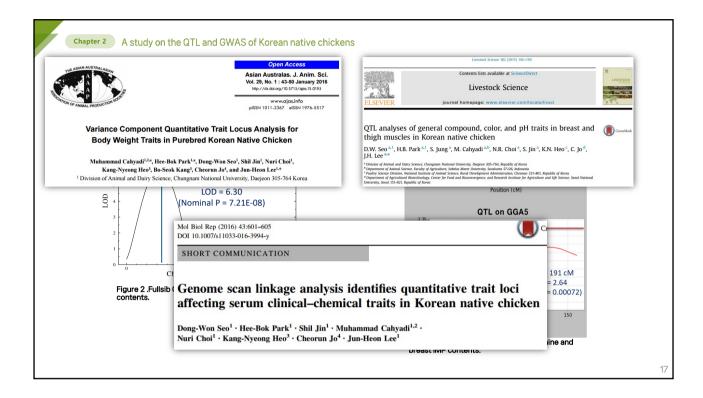

Chapter 2 A study on the QTL and GWAS of Korean native chickens

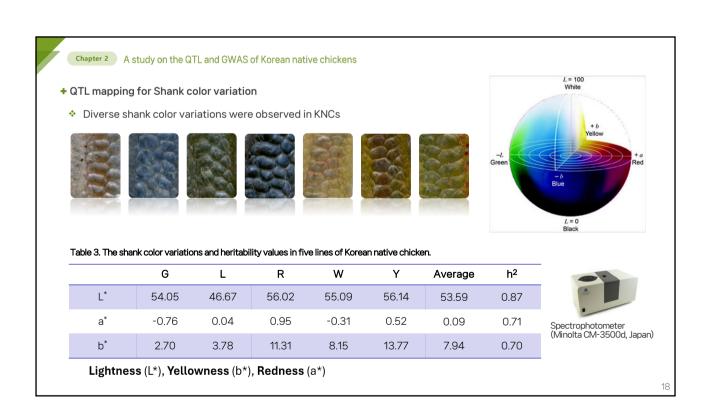
- + QTL mapping for economically important traits for KNC
 - Construction of reference population for QTL mapping

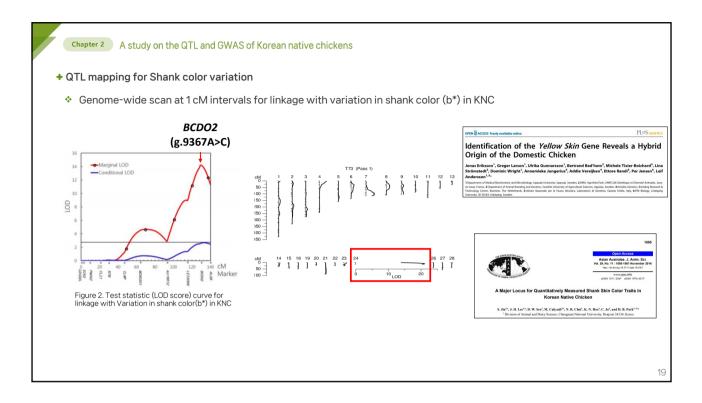
Within line mating

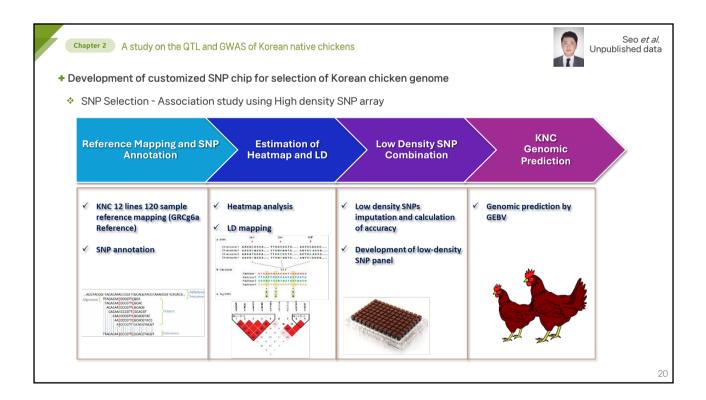


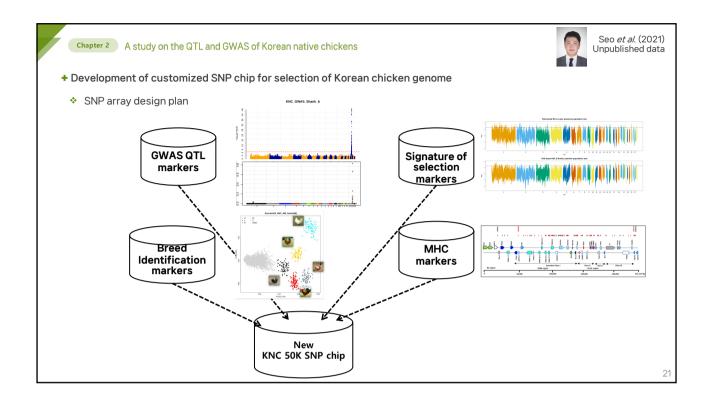
F1 generation of Korean native chicken (596)

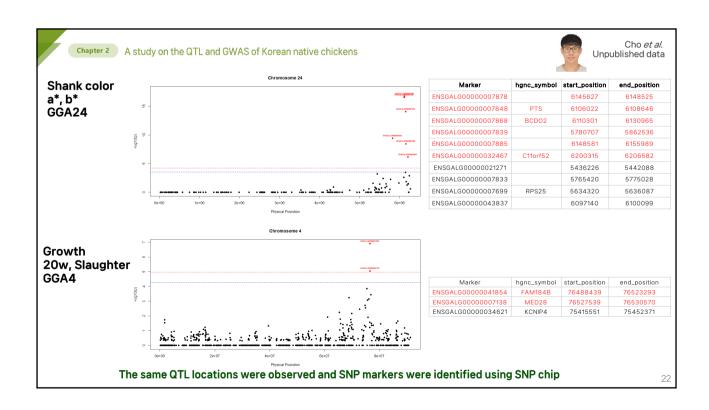


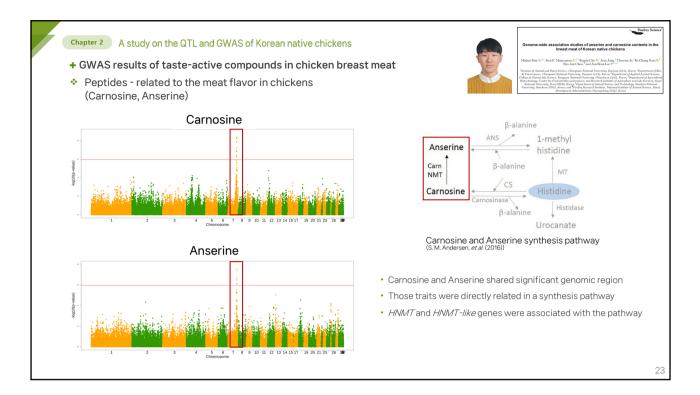

Chapter 2 A study on the QTL and GWAS of Korean native chickens

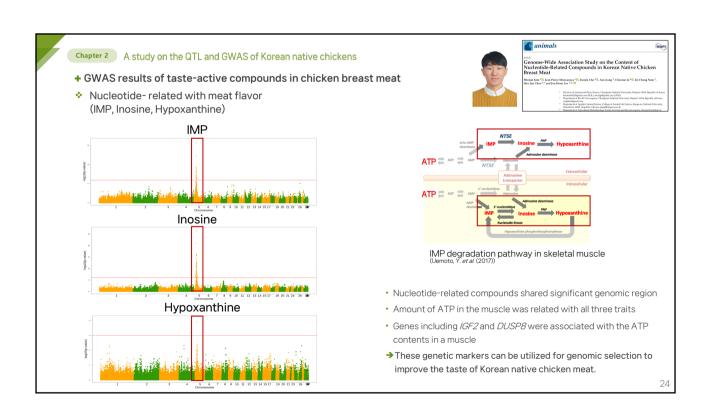

+ Genome-wide linkage map (using MS markers) for Korean native chicken

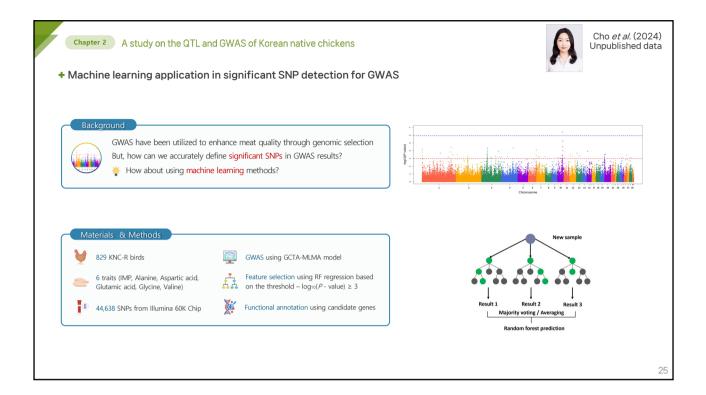


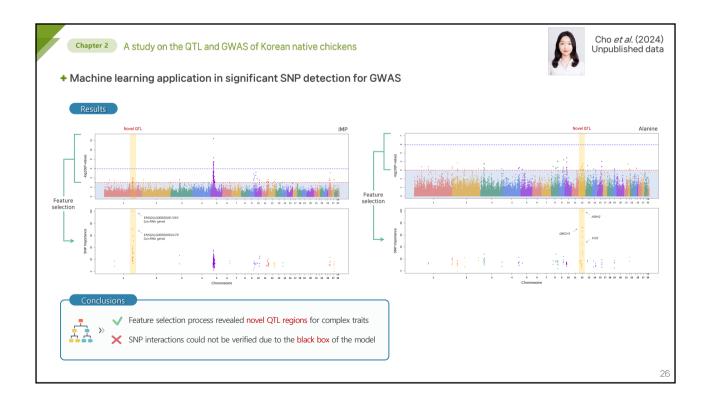

- · Color related: 2 traits (feather color, skin color)
- Growth related: 3 traits
- · Meat quality: 9 traits
- Fatty acid related: 20 traits
- Volatile compounds: 43 traits
- Nucleic acid related: 4 traits
- Physiological function related: 2 traits
- Clinical measurement: 8 chemical traits

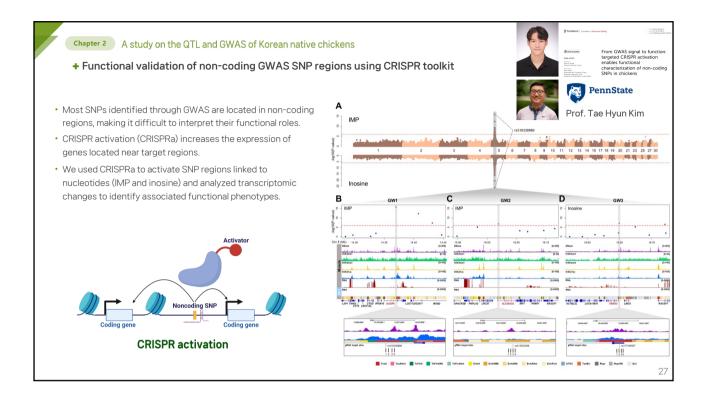


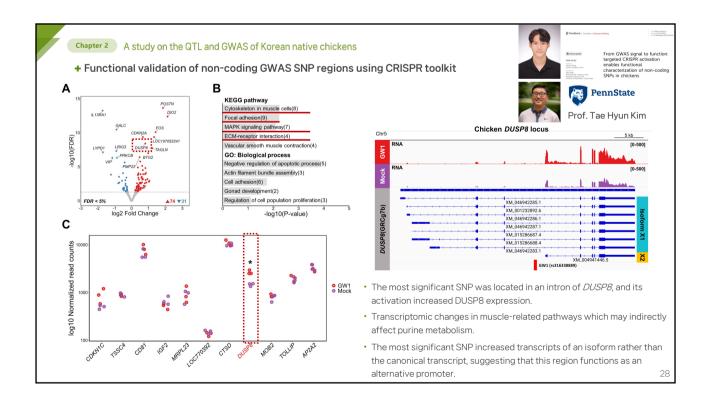


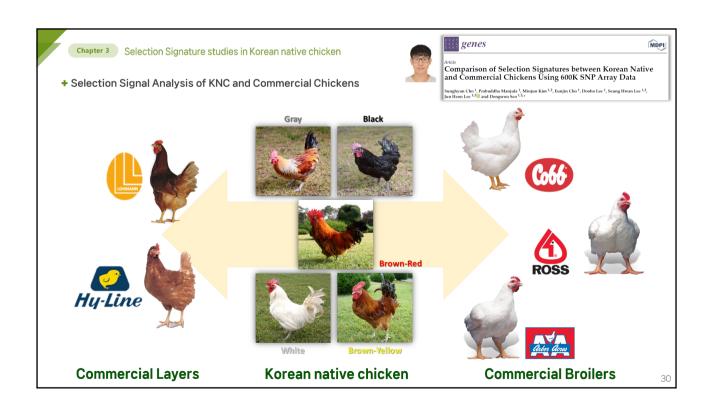


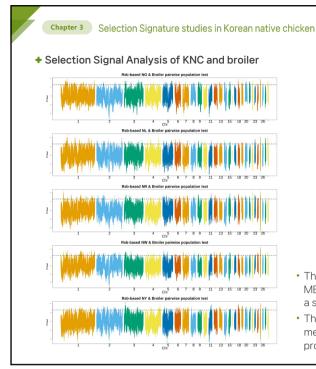


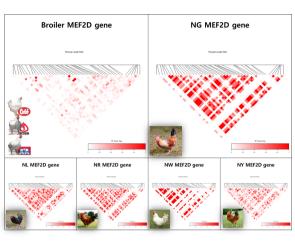




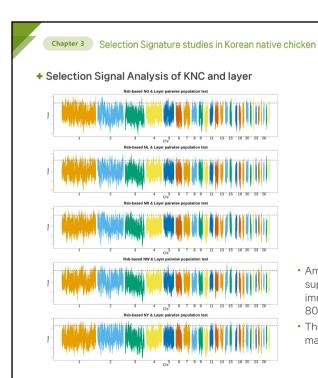








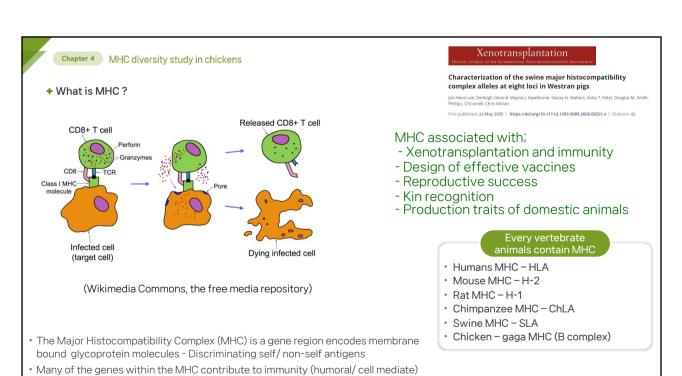
3. Selection signature studies in Korean native chickens

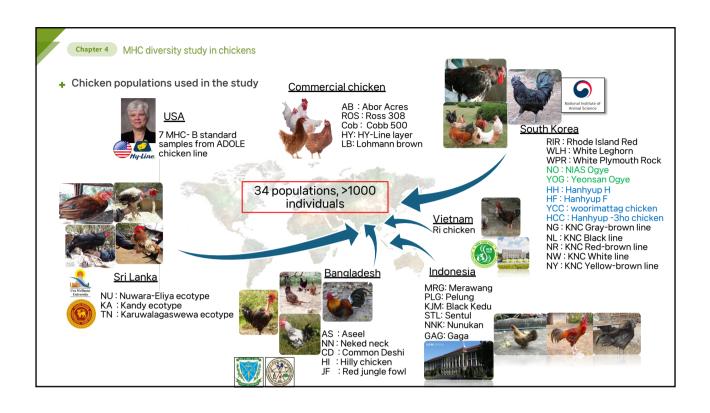


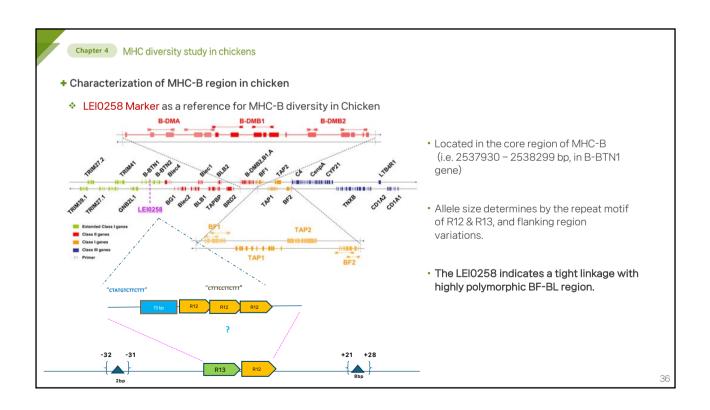
- This study confirmed the association of a selection signal with the MEF2D gene (Chr 25: 1,557,867–1,620,174 bp) in all KNC lines, in which a strong LD block was present compared with the broiler population
- The myocyte-specific enhancer-binding factor 2D (MEF2D) gene is a member of the MEF2 family and acts as a major regulator in the production of various muscles.

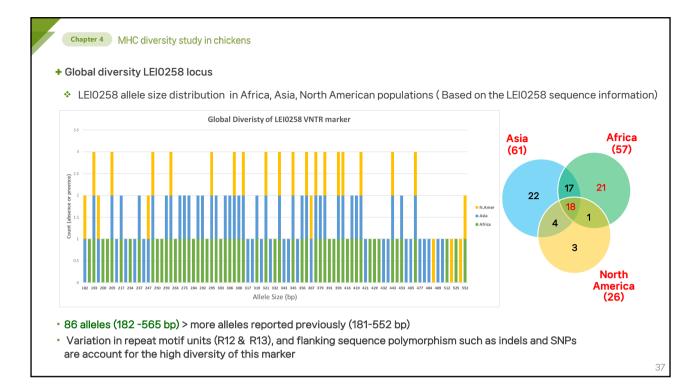
31

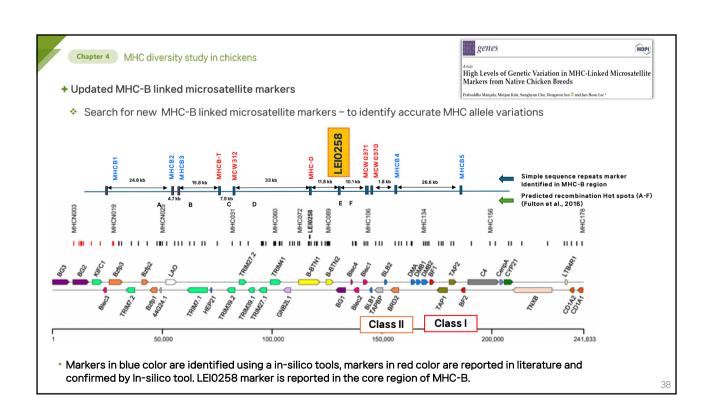
- Layer IGSF11 gene

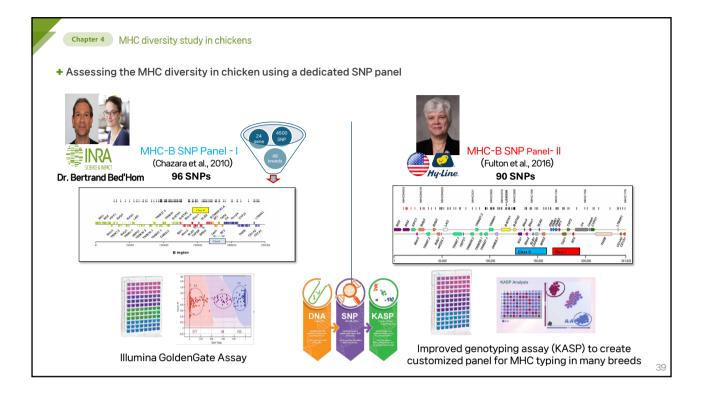

 NG IGFS11 gene

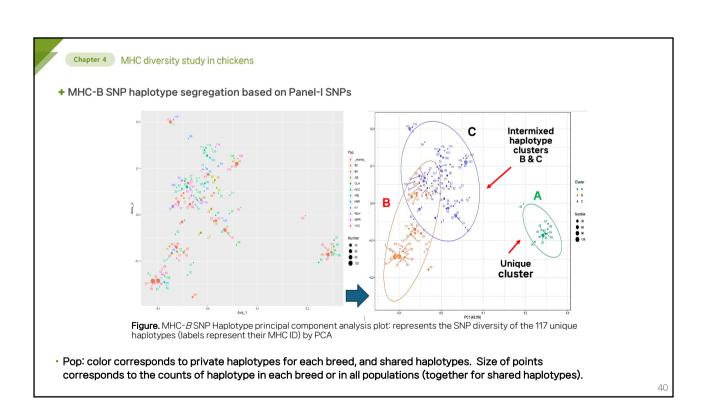

 NG IGFS11 gene
- Among the candidate selection signal genes immunoglobulin superfamily member 11 (IGSF11) genes have been associated with immune responses and disease sensitivity (Chr 1: 80,838,084 – 80,925,757 bp).
- The IGSF11 gene is a member of the immunoglobulin superfamily and is mainly expressed in the brain and reproductive organs

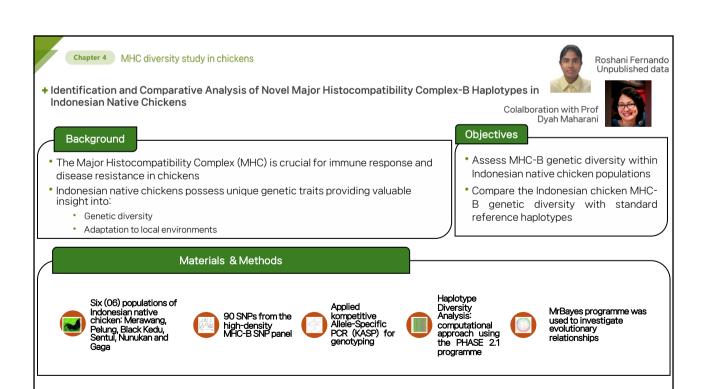

32

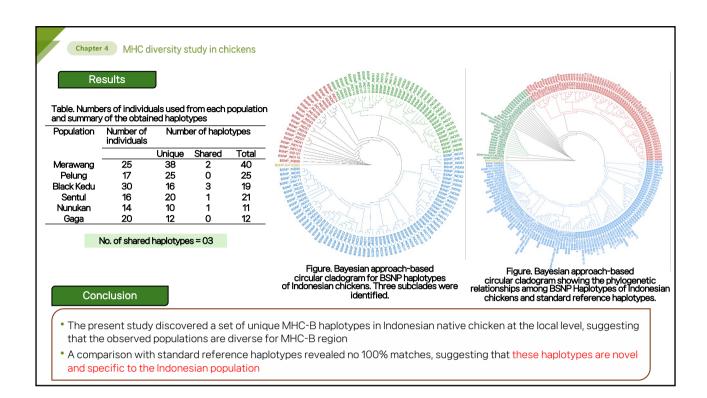


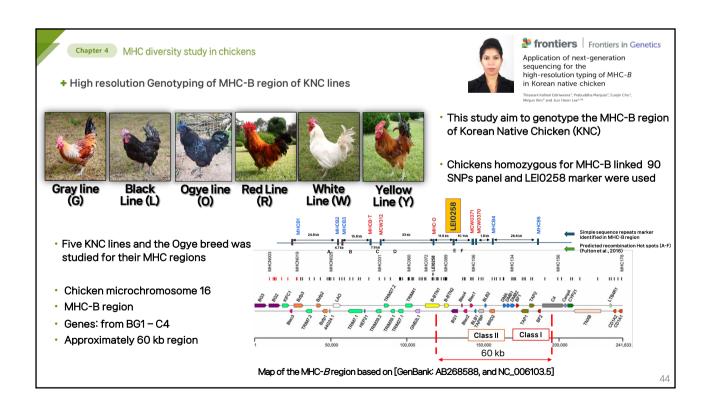

4. MHC diversity study in Korean native chickens











- + Long range PCR (LR-PCR) & NGS base haplotyping of Target gene of MHC-B
- Provides high resolution application for MHC haplotyping
- Details variation in the stable Class I and Class II genes can be evaluate in comparison with standards haplotypes

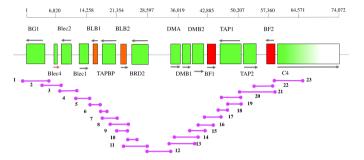
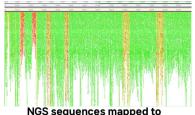
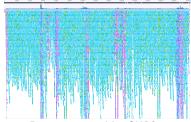
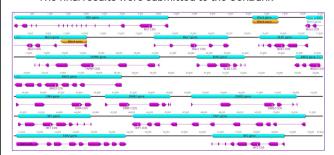




Figure. Map for the LR-PCR primers used to amplify the MHC- ${\it B}$ region

NGS sequences mapped to reference


De novo assembly of NGS sequences

 Use of LR-PCR to perform NGS on large genomic regions have benefits, especially when the entire gene regions including introns are of interest

45

Chapter 4 MHC diversity study in chickens

- + Genes and Exons annotations for MHC-B region of KNC
- The consensus sequence for MHC-B region (BG1 BF2) of all the 5 KNC lines and the Ogye breed were generated
- The generated consensus sequences were annotated for their genes (and pseudogenes) and exons
- The final results were submitted to the GenBank

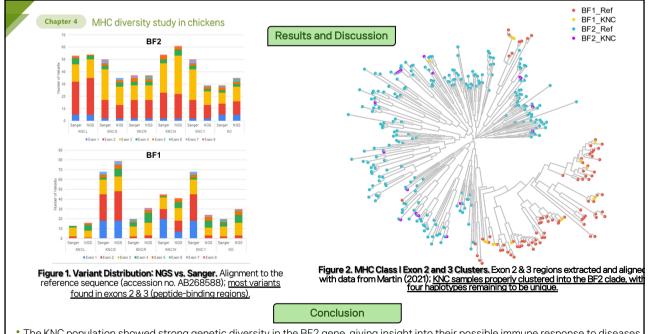
A visualization of the MHC genes, pseudogenes and exons

Chapter 4 MHC diversity study in chickens

Agulto *et al.* (2025) Unpublished data

+ Genetic Characterization of MHC I Genes in KNC

Background


- The Class I BF2 gene in the MHC region, particularly the B21 haplotype, is linked to immune responses against diseases such as Marek's disease
- · However, the existing LEI0258 microsatellite marker and 90-SNP panel for MHC do not fully capture the high polymorphism of the BF1 and BF2 genes

Objective

· To genetically characterize the MHC class I, BF1 and BF2 genes in Korean native chicken (KNC) breeds in relation to the LEI0258 marker and the 90-SNP panel (BSNP)

Materials and Methods

- The KNC population showed strong genetic diversity in the BF2 gene, giving insight into their possible immune response to diseases.
- This data can help guide breeding programs to select BF2 haplotypes that may improve disease resistance in KNC populations

Chapter 4 MHC diversity study in chickens

- ♣ Ongoing research for Genetic Characterization of MHC Genes
- Chungnam National University hosted CCAT2025 conference
- CCAT2025: CNU Conference of Advanced Technology 2025 (Sep 24-26, 2025)
- · A session is hosted in the Department of Animal science, called "Animal Bio Big Data"

A telomere-to-telomere pangenome reveals structural variations as key drivers of complex traits in chickens

Ranran Liu

liuranran@caas.cn

- · Provide long-read 8 Chinese native chicken samples
- · Plan to generate long-read Korean native chicken samples
- · Can be used for the structural variation in the MHC region

Summary

- 1. Genetic Diversity The KNC population exhibits unique genetic characteristics based on diversity analyses.
- 2. GWAS Findings Genome-wide association studies identified QTLs related to shank color and meat quality traits in KNC
- 3. Functional Validation CRISPR validation confirmed that GWAS-identified SNP regions associated with gene expression linked to the phenotype.
- 4. Selection Signatures KNC population show genetic similarities to both meat-type and layer-type breeds through selection signature analyses.
- 5. MHC Study The MHC analysis suggests that KNC may possess unique genetic variants contributing to disease resistance.

Conclusion

- These findings provide valuable insights for the conservation and genetic improvement of native chicken populations
- Future studies will expand on these results using high-resolution sequencing data rather than SNP chip.

50

Acknowledgements

AMG lab members in Chungnam National University

Thank you.

Jun Heon Lee, PhD junheon@cnu.ac.kr

3. OVERVIEW OF H'MONG CATTLE - A VALUABLE LIVESTOCK GENETIC RESOURCE

PROF. NGUYEN XUAN TRACH VIETNAM NATIONAL UNIVERSITY OF AGRICULTURE

H'MONG CATTLE A VALUABLE LIVESTOCK GENETIC RESOURCE

by Prof. Dr. Nguyen Xuan Trach

VNUA, 2025

INTRODUCTION

- H'Mong cattle (also known as Meo cattle, Cao Bang humped cattle, Dong Van cattle, or highland yellow cattle) are commonly raised by the H'Mong people and other ethnic minorities in highland areas.
- Serving as a livelihood and a cultural symbol of the H'Mong people.
- Considered to have significant advantages over other local Vietnamese cattle.
- H'Mong beef is famous for its fragrance, tenderness, and fine texture.
- The breed is listed in the government's prohibited export category.

STT	Tên giống vật nuôi		
I	Giống lợn		
1	Loni		
2	Lon mini Quáng Trị		
п	Giống gà		
1	Gà Đông Táo		
2	Gà Hồ		
ш	Giống bò		
1	Bò H'Mông		
2	Bò u đầu rìu		

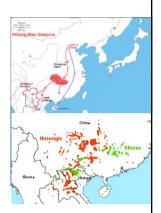
INTRODUCTION

- Several projects have been developed to promote H'Mong cattle farming.
- Some businesses have invested in branding H'Mong beef.



- What are the actual advantages and limitations of this breed?
- What are the solutions for sustainably utilizing this genetic resource?
 HVN Hoc viên Nong nghiệp Việt Nan

CONTENTS


- ORIGIN OF H'MONG CATTLE
- . APPEARANCE AND BODY SIZE
- . MEAT PRODUCTIVITY
- . REPRODUCTIVE PERFOMANCE
- DRAFT POWER
- ADAPTABILITY
- . R & D ORIENTATION
- . CONCLUSIONS
- . Q&A

ORIGIN OF H'MONG CATTLE

· Historical Background

- H'Mong people migrated southward for a long history.
- Nowadays, the H'Mong primarily reside in rugged mountainous regions stretching from Southwest China to Vietnam, Northern Laos, Northeast Thailand, and Northeast Myanmar.
- ✓ H'Mong people arrived in Vietnam in three major waves:
 - 1. Late 17th Early 18th century: Following the failure of the "Reformation of Local Rule" policies.
 - 2. 1796-1820: After the unsuccessful resistance against Emperor Qianlong and Gia Khanh.
 - 3. 1840-1868: After the collapse of the Taiping Rebellion.
 - The H'Mong cattle followed the H'Mong people migrating from China to Vietnam?

ORIGIN OF H'MONG CATTLE

Historical Background

- ✓ In Vietnam:
 - Alternative names: Miao, Miêu, Mèo, Meo, Lao Sung
 - Population: Nearly 1.4 million people
 - Distribution: Mountainous Northern region, Northern Central region, and Central Highlands.

The H'Mong cattle is an indigenous breed created by the H'Mong people after they arrived in Vietnam?

ORIGIN OF H'MONG CATTLE

Historical Background

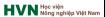
Which cattle breeds are raised by newly migrated H'Mong people in the Central Highlands?

- ✓ They use local cattle breeds provided by the Government, such as the Vang and Laisind breeds.
- ✓ Cattle raising is their main activity, and they take better care of their cattle compared to the local ethnic groups.
- ✓ They buy cattle from H'Mong people in Thailand, Laos, and Cao Bang to raise as fighting bulls → CULTURE.
- → Wherever there are H'Mong people, there are H'Mong cattle (not only in Vietnam).

ORIGIN OF H'MONG CATTLE

Genetic evidence

- ✓ Pham Doan Lan et al. (2008): The H'Mong cattle have a homogeneous genetic structure and a high level of genetic diversity.
- ✓ Berthouly et al. (2010):
 - All individuals carry a zebu-type Y chromosome, while there is a mixture of taurine and zebu maternal lineages.
 - o H'Mong cattle are positioned between the taurine and zebu genetic groups in the neighbor-joining (NJ) phylogenetic tree.
- ✓ Le Trung Thanh et al. (2013): H'Mong cattle are genetically distinct from other local breeds, indicating a separate genetic origin.
- ✓ The presence of both taurine and zebu maternal lineages resembles the genetic pattern of cattle in southern China (Cai et al., 2006; Lei et al., 2006).
- ⇒ The H'Mong cattle originated from southern Chinese cattle as a result of historical crossbreeding (*Bos indicus* × *Bos taurus*).

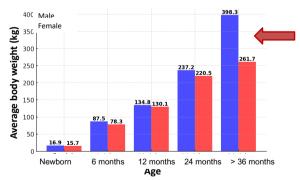

ORIGIN OF H'MONG CATTLE • Taxonomy Phán họ Hươu cao cổ (Grafidae) Phán họ Hydropotinae Phán họ Hydropotinae Phán họ Hurou nai (Cervidae) Phán họ Hurou nai (Cervidae) Phán họ Hurou nai (Cervidae) Phán họ Linh dương (Antilopinae) Phán họ Linh dương (Antilopinae) Phán họ De cửu (Caprinae) Phán họ De cửu (Caprinae) Loài bỏ (Bos primgenius) Loài bỏ bison châu Au (Bison bosonstr) Trâu câm lây (Swamp buffaco) Chi trâu Bubalius (Trâu câm lây (Swamp buffaco) Loài trâu Tamaraus (Bubalius mindvensis) Chi Pseudoryx Loài sao la (Pseudoryx righetinhensis)

PHYSICAL CHARACTERISTICS

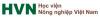
· Apperance:

- Small ears growing horizontally; slightly curved back; long rump; tall legs; slightly convex or flat forhead; broad dewlap.
- ✓ Bulls have a fairly high shoulder hump, a long body, a robust physique, and well-developed muscles; cows have a smaller shoulder hump but a large udder.
- ✓ The coat color varies: light yellow, chestnut brown, dark red, or jet black.
- ✓ Eyes and eyelashes are slightly yellowish, with a bright yellow ring around the eye corners.
 - ➤ H'Mong cattle share similarities with the Southern Yellow cattle group.
 - ➤ They are intermediate between European cattle (*Bos taurus*) and Indian humped cattle (*Bos indicus*).

PHYSICAL CHARACTERISTICS


Body size

Age	Male (kg)	Female (kg)	Source	
Newborn	15-16	15-16	Viện Chăn nuôi (2004)	
	17-18	14-16	Đào Lan Nhi (2012)	
	17.34	16.87	Trần Văn Thăng & cs. (2014)	
	16.25	15.72	Nguyễn Thị Ngoan & cs. (2015)	
6 months	90.45	78.34	Trần Huê Viên (2016)	
	87.45	78.34	Trần Văn Thăng & cs. (2014)	
12 months	141.41	137.92	Nguyễn Thị Ngoan & cs. (2015)	
24 months	233-275	216-225	Đào Lan Nhi (2012)	
	321.3	267.4	Trần Huê Viên (2016)	
≥36 months	397.83	261.86	Nguyễn Thị Ngoan & cs. (2015)	
	380-390	250-270	Viện Chăn nuôi (2004)	
	400-450	250-280	Nguyễn Văn Niêm & cs. (2001)	
	382-388	250-270	Đào Lan Nhi (2012)	


HVN Học viện Nông nghiệp Việt Nam

PHYSICAL CHARACTERISTICS

Body size

- Local Yellow Cattle: Birth weight 12-15kg, Mature weight (male: 200-250kg, female: 160-200kg).
- Sindhi Crossbred Cattle: Birth weight 17-19kg, Mature weight (male: 350-450kg, female: 250-300kg).
 - > Bigger than Yellow cattle, comparable to Sindhi crossbred cattle

MEAT PRODUCTIVITY

• Average daily gain (ADG)

Age period	ADG (g/head/day)	Source
Birth to 6 months (male)	406.16	Trần Văn Thăng & cs. (2014)
Birth to 6 months (female)	341.50	Trần Văn Thăng & cs. (2014)
18 – 24 months of age	294	Nguyễn Đàm Thuyên (2012)
24 - 36 months of age	135	Nguyễn Đàm Thuyên (2012)
Fattened at 2 years of age	540	Hoàng Xuân Trường (2018)
Fattened at 3 years of age	387	Hoàng Xuân Trường (2018)
Fattened at 4 years of age	323	Hoàng Xuân Trường (2018)

Comparable to local Yellow cattle but lower than Sindhi crossbred cattle.

HVN Hoc viên Nong nghiệp Việt Nam

MEAT PRODUCTIVITY

Meat Yields

Parameter	Value (%)	Source
Dressing percentage	52.12	Nguyễn Văn Niêm & cs. (2001)
	50-52	Đào Lan Nhi (2012)
	55	Hoàng Xuân Trường (2018)
Meat percentage	40.33	Nguyễn Văn Niêm & cs. (2001)
	38-40	Đào Lan Nhi (2012)
	45	Hoàng Xuân Trường (2018)
Class 1 meat	>45	Trần Huê Viên (2016)

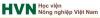
➤ Higher than local Yellow cattle, similar to Sindhi crossbred cattle.

MEAT PRODUCTIVITY

Meat quality

Danamatan	Age at fattening (years)		
Parameter	2	3	4
Chemical composition			
Dry mater (%)	25.35	25.03	25.10
Protein (% DM)	77.48	3.68	3.78
Ash (% DM)	3.67	77.24	77.12
Fat (% DM)	7.18	7.55	7.96
pH			
after 45 minutes	6.62	6.87	6.82
after 24 hours	5.57	5.72	5.67
after 48 hours	5.61	5.59	5.56

Source: Hoàng Xuân Trường (2018)


MEAT PRODUCTIVITY

• Meat quality (cond.)

Dawanakana	Age at fattening (years)		
Parameters	2	3	4
Colour (after 48h)			
Lightness (L*)	42.57	39.34	37.05
Redness (a*)	21.11	20.73	20.82
Yellowness (b*)	10.14	10.88	11.03
Water loss after			
preservation/processing (%)			
after 24h	1.9/37.0	1.8/32.6	1.40/31.18
after 48h	2.4/38.5	1.7/35.5	1.52/34.45
Toughness (N)*			
after 24h	65.10	70.00	86.50
after 48h	64.21	69.04	84.31

Source: Hoàng Xuân Trường (2018)

- ➤ More tender than Yellow cattle and Zebu hybrids.
- > Comparable to tropical beef breeds.

REPRODUCTIVE PERFORMANCE

• Cows

Parameters	Average	Source	
Age at first calving (months)	33.44	Trần Xuân Vũ (2012)	
	33-35	Đào Lan Nhi (2012)	
	36.78	Trần Huê Viên (2016)	
Days open (months)	3.58	Trần Huê Viên (2016)	
Conception after first insemination (%)	45.28	Trần Xuân Vũ (2012)	
Calving interval (months)	17.23	Trần Xuân Vũ (2012)	
	12.79	Trần Huê Viên (2016)	
1 calving/year (%)	47.09	Nguyễn Thị Ngoan (2015)	
	60	Hoàng Xuân Trường (2018)	
2 calvings/3 years (%)	42.38	Nguyễn Thị Ngoan (2015)	
	35	Hoàng Xuân Trường (2018)	

HVN Học viện Nông nghiệp Việt Nam

REPRODUCTIVE PERFORMANCE

• Bulls

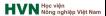
Parameters	Average	Source
Semen volume (V, ml)	4.37	Trần Xuân Vũ (2012)
	4.43	Trịnh Xuân Bình (2013)
	4.50 (Summer-Fall)	Trịnh Quang Phong & Phan
	6.10 (Winter-Spring)	Văn Kiểm (2006)
Sperm activity (A, %)	67.98	Trần Xuân Vũ (2012)
	68.97	Trịnh Xuân Bình (2013)
	70 before freezing, 30 after thrawing in Summer-Fall; 80 before freezing, 35 after thrawing in Winter-Spring	Trịnh Quang Phong & Phan Văn Kiểm (2006)
Sperm concentration (C, bil./ml)	0.84	Trần Xuân Vũ (2012)
	0.85	Trịnh Xuân Bình (2013)
	0.85 (Summer-Fall)	Trịnh Quang Phong & Phan
	0.98 (Winter-Spring)	Văn Kiểm (2006)
Total active sperms (bil.)	2.5	Trần Xuân Vũ (2012)
Abnormal sperms (%)	16.26	Trần Xuân Vũ (2012)
	16.57	Trịnh Xuân Bình (2013)
Active sperms after thrawing (%)	83.47	Trịnh Xuân Bình (2013)
Semen pH	6.74	Trần Xuân Vũ (2012)

- Genetic conservation
- Protection of genetic resource
- Research on genetics
- Selection and breeding for meat production
- Improvement of feeding practices
- Market linkage and value chain development

R & D ORIENTATION

Genetic conservation

❖ Purpose: To conserve and sustainably develop the genetic resources of H'Mong cattle, aiming to increase productivity, product quality, and efficiency in cattle raising and to enhance farmers' incomes.


❖ Solutions:

√ *In-situ* conservation:

Maintain and develop the breed in its native habitat: traditional farming supports, training local farmers in selective breeding techniques, community-based purebreeding programs, and link local production to markets.

√ Ex-situ conservation:

Preserve genetic resources through the storage of semen, embryos, and live specimens in research and breeding centers.

Protection of genetic resource

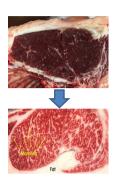
Objective: To safeguard against genetic dilution, it is important to regulate crossbreeding with other breeds.

Strategies:

- ✓ Establishing a registration and certification system for purebred H'Mong bulls;
- ✓ Implementing AI programs using semen from genetically confirmed bulls;
- ✓ Developing designated breeding areas or "nucleus herds" exclusively for maintaining pure H'Mong cattle.

R & D ORIENTATION

Research on genetics

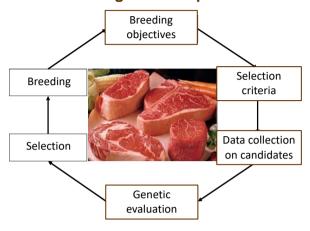

- Objective: Provide scientific basis for the conservation, selection, and breeding of H'Mong cattle.
- Methods: Microsatellites, single nucleotide polymorphisms (SNPs), mitochondrial DNA, and quantitative genetics.

❖ Contents:

- ✓ DNA sequencing;
- ✓ Identification of marker genes related to important traits;
- √ Assessment of genetic diversity through heterozygosity and allelic richness;
- ✓ Determination of inheritability of important traits;
- ✓ Determination of genetic structure of populations and inbreeding risks;
- ✓ Monitoring genetic changes over time resulting from selection pressures or admixture with other breeds.

 HVN Hoc viện Noing nghiệp Việt Nam (Nông nghiệ

- Selection and breeding for meat production
 - Objectives:
 - ✓ Genetic improvement: Enhance traits related to meat production, including marbling, growth rate, carcass weight, and feed efficiency.
 - ✓ Conservation of native traits: Safeguard the breed's unique genetic identity and its adaptation to mountainous environments.
 - ✓ *Productivity enhancement*: Improve overall farm profitability.



R & D ORIENTATION

- Selection and breeding for meat production
 - * Approaches:
 - Performance recording: Systematic collection of phenotypic data through body measurements, ultrasound imaging, and carcass grading after slaughter.
 - Estimated breeding values (EBVs): Selection based on traits such as growth rate, FCR, carcass quality, eye muscle area, intramuscular fat, and backfat thickness.
 - ✓ *Genomic selection*: Application of SNP-based markers to predict performance and breeding value at an early stage.
 - > Develop infrastructure (artificial insemination, embryo transfer).
 - > Establish a central genetic database.
 - > Develop a complete breeding program.

R & D ORIENTATION • Selection and breeding for meat production

Breeding program for meat production

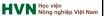
HVN Học viện Nông nghiệp Việt Nar

R & D ORIENTATION

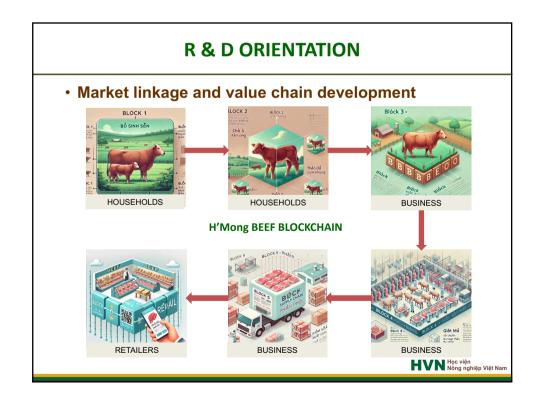
Improvement of feeding practices

Objective: Optimize beef productivity, improve feed utilization efficiency, and enhance meat quality—particularly tenderness, marbling, unsaturated fatty acid content, and flavor.

❖ Solutions:


- ✓ Enhanced utilization of local feed resources such as grass, corn, silage, and by-products.
- ✓ Supplementation: to overcome nutritional deficiencies or imbalances.
- ✓ Development of sustainable feeding systems:
 - Develop feeding standards for each production stage (breeding, growing, finishing).
 - o Determine optimal slaughter weight and age.
 - Formulate cost-effective rations using locally available feed resources, complemented by commercial feeds when necessary.

- Market linkage and value chain development
 - ❖ Objectives:
 - ✓ Enhance income and livelihood security for upland farmers;
 - ✓ Incentivize genetic and nutritional improvements;
 - ✓ Preserve the breed through economic relevance;
 - ✓ Meet growing domestic demand for high-quality, traceable beef.


R & D ORIENTATION

- · Market linkage and value chain development
 - **❖** Solutions:
 - ✓ Strengthening producer organizations
 - ✓ Enhancing market linkages and aggregation systems
 - ✓ Product differentiation and branding
 - √ Value-added processing and quality assurance
 - ✓ Access to market information and digital tools

• Market linkage and value chain development

No.	Stages	Activities	Key actors
1	Cow-calf farming	Free or semi ranging	Contracted households
2	Grower farming (weaning to start of fattening)	Free or semi ranging	Contracted households and/or businesses
3	Fattening	Intensive farming	Businesses
4	Slaughter & processing	Slaughtering, meat cutting and packaging in slaughterhouses	Businesses
5	Meat distribution	Transporting beef products to wholesalers, retailers, and restaurants	Businesses
6	Retail & consumption	Selling beef products in supermarkets, butcher shops, and restaurants	Retailers & consumers

CONCLUSIONS

- H'Mong cattle serve as an essential livelihood and a cultural feature of the H'Mong people.
- Their morphological traits resemble the Southern Yellow cattle group.
- They likely originated in China, accompanying the migration of H'Mong communities to Vietnam.
- Their body size and dressing percentage are comparable to native Yellow cattle and comparable to Sindhi crossbreds.
- Their growth rates, feed conversion efficiency, and reproductive performance are generally low.
- Their meat shows normal pH, color, and water-holding capacity, with tenderness superior to that of native Yellow cattle and zebu crossbreds, and comparable to tropical beef breeds, though intramuscular fat remains limited.
- They exhibit strong adaptability to high-altitude conditions and cold weather.
- It is necessary to conserve and protect this genetic resource, conduct research to improve genetic quality towards beef production, in parallel with improving feeding regimes and developing a value chain for specialty H'Mong beef products.
 HVN Hoc viện Nông nghiệp Việt Na

4. BUILDING CLIMATE-SMART BUFFALO ENTERPRISES THROUGH PRECISION FARMING, ARTIFICIAL INTELLIGENCE, AND GENOMIC SELECTION

DR. MEHAR KHATKAR
DAVIES LIVESTOCK RESEARCH CENTRE, SCHOOL OF
ANIMAL AND VETERINARY SCIENCES, ADELAIDE
UNIVERSITY, AUSTRALIA

Building Climate-smart Buffalo Enterprises Through Precision Farming, Artificial Intelligence, and Genomic Selection

Mehar Khatkar

Outlines Precision livestock farming- Introduction Buffalo precision farming project Buffalo genomic resources and 1000 buffalo project Breeding for low emission buffaloes

Precision Livestock Farming (PLF)= Data driven management

PLF uses technology and data-driven techniques to monitor and manage livestock.

Enhance animal well-being, improve re/production, and reduce environmental impact.

Utilizes a range of sensors and cameras tailored for livestock management.

Animal welfare improvement, reduced carbon footprint, precise reproduction timing, and efficient resource use.

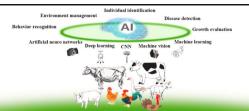
3

Why Precision Livestock Farming Now?

- **Technological Maturity:** Advancements in sensor technology, Artificial Intelligence and data analytics make PLF more effective and affordable than ever.

- **Environmental Imperative**: With growing concerns about climate change, PLF offers a way to reduce the carbon footprint of livestock farming.

- **Market Demands**: Consumers are increasingly seeking products that are sustainably produced and ethically sourced, which PLF can deliver.


- **Operational Efficiency:** The ongoing challenges of disease management, feed optimization, and waste reduction make PLF an immediate necessity for sustainable farming.

- Innovation & Youth Engagement: As part of the SmartBuffalo Project, the integration of modern technology in farming attracts a younger generation to agricultural professions, rejuvenating the industry.

4

Species Where PLF Has Been Applied

- Cattle: Monitoring of rumen pH, estrous cycles, and overall health in both dairy and beef cattle.
- Poultry: Sensors for temperature, humidity, and behaviour to optimize egg production and broiler growth.
- -Swine: Health monitoring of sows, disease detection, and feeding optimization in pig farming.
- Sheep and Goats: Management of grazing patterns, lambing events, and flock health.
- Aquaculture: Water quality parameters like pH, temperature, and oxygen levels are monitored in fish farming.
- Equine: Monitoring of vital signs and activity levels for health management and training.
- Camels and Alpacas: Optimized feeding and health monitoring, particularly in regions where they are primary livestock.
- - Pets: Monitoring of activity levels, nutrition, and health metrics, particularly for dogs and cats.

.

International Collaborative project

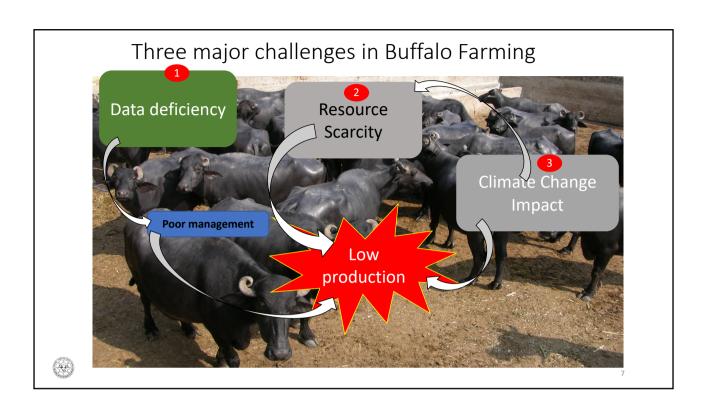
Climate smart buffalo farming using digital support systems

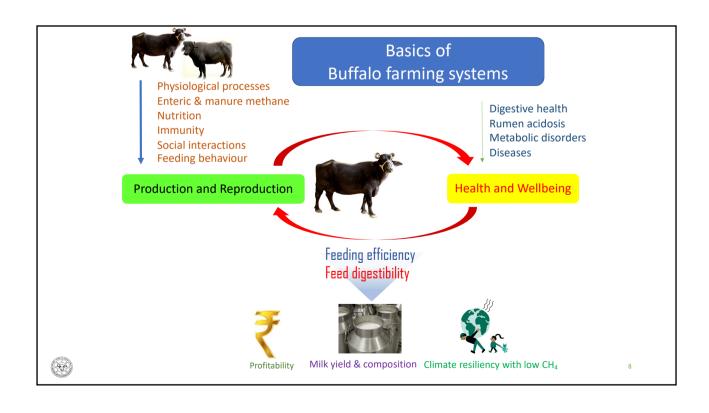
Lead Institute

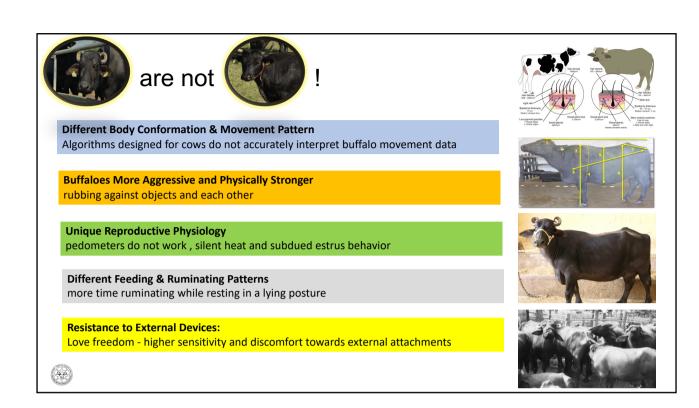
ICAR- Central Institute for Research on Buffaloes, Hisar -125001, India

Collaborating Institutes

Indian Institute of Technology, Roorkee, India & University of Adelaide, Australia





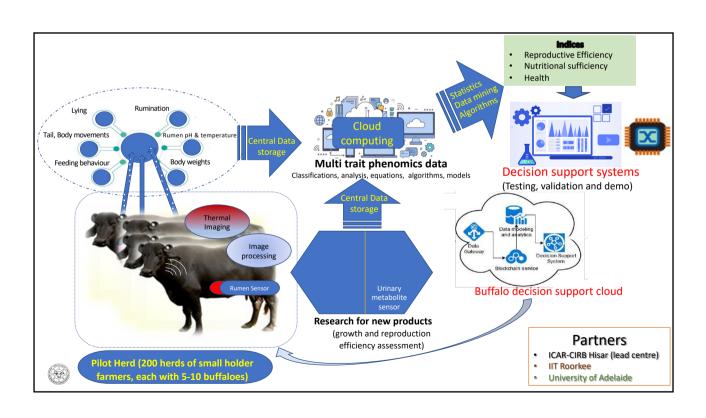


Buffalo Husbandry Practices are different

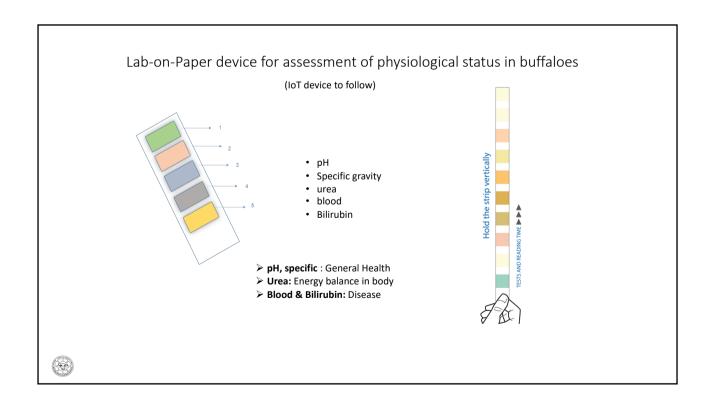
No sensors for tied animals?

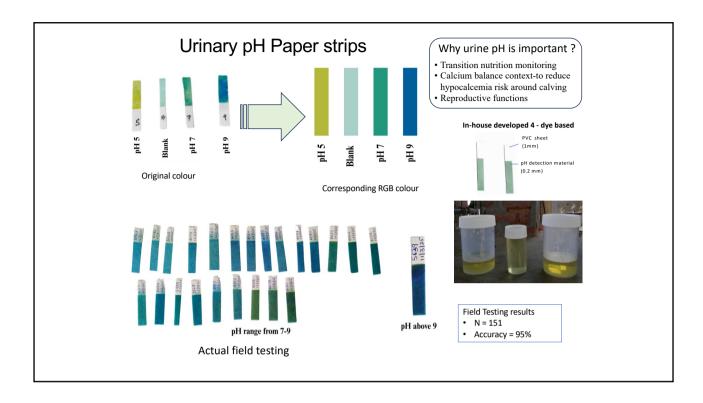
Climate smart buffalo farming using digital support systems

Objectives


- I. Building a sensor-based infrastructure for automated, IoT based generation of animal related data
- II. Developing buffalo management tools for nutrition, reproduction, health and welfare
- II. Demonstration and capacity building in climate smart sensor-based buffalo management

Duration: 5 years


Start - April 1st 2024 End - March 31st 2029



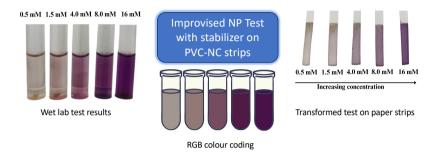
11

POC: Paper strip-based Milk urea estimation

As an indicator of nutritional sufficiency in buffaloes

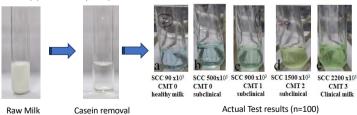
Steps involved in development of paper strips for urea estimation in milk:

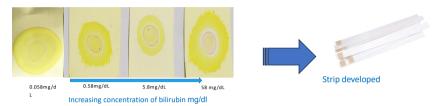
- Mixing dye with colouring agent (single reagent)
- Incubation (10 hours at 37°C)
- Coating on PVC strip + glue + Whatman filter paper
- Testing and validation in standards and field samples
 - Field Testing results
 - N = 89
 - Accuracy = 80%



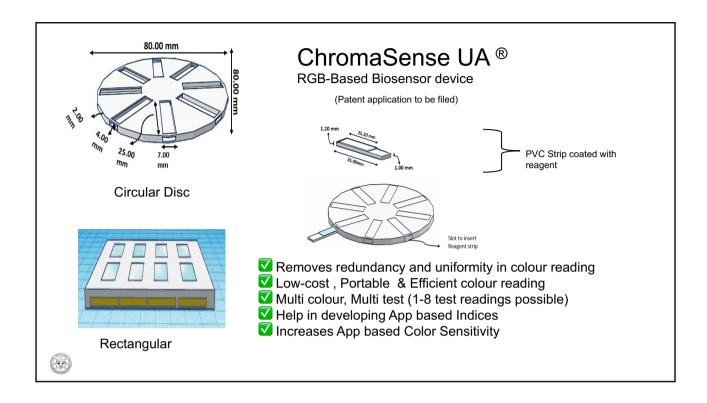
Broad range Urea estimation strips in buffalo milk (conc. in mg/dl)

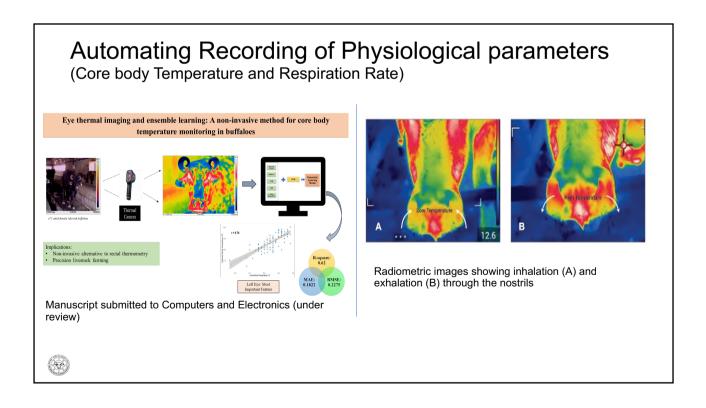
Normal milk urea conc. = 10 -120 mg/dl


POC: strips for ketosis detection


POC: ALP Strip test for SCC count & Mastitis detection

- · A milk enzyme based
- Useful in diagnosis Subclinical Mastitis and stage of lactation
- Novel method Combination of 3 reagents (all at room temperature)
- · No requirement of any specific instrument
- · Test completed in 10 minutes at room temperature
- · Patent application (due)

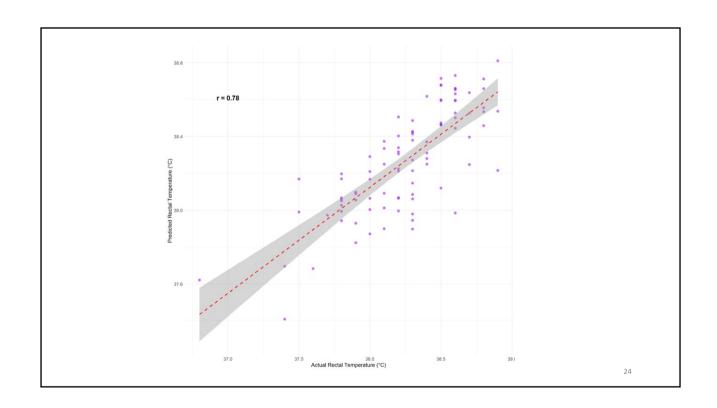

POC: Strip test for detection of bilirubin



- · Urine based
- Novel method single reagent based; long storage stability
- Highly sensitive method can detect bilirubin levels to as low as 1mg/dL
- Eye reading No requirement of any specific instrument
- Immediate reading (less than 1 minute)
- Patent application (ready to file)

Eye thermal imaging and ensemble learning: A non-invasive method for core body temperature monitoring in buffaloes

- Infrared thermal images on 471 adult female Murrah breed buffaloes were captured using a hand held thermal camera.
- Extract eye's medial canthus temperatures from thermal images

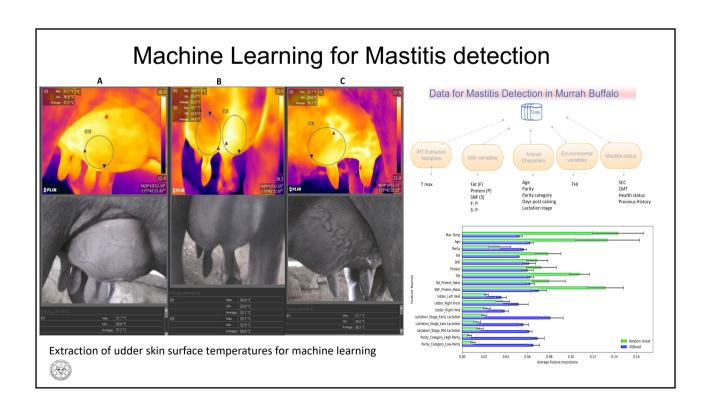

Ground truth: Rectal temperature

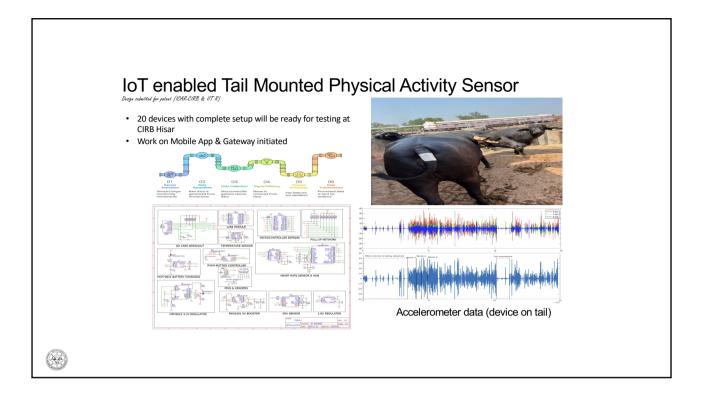
c.

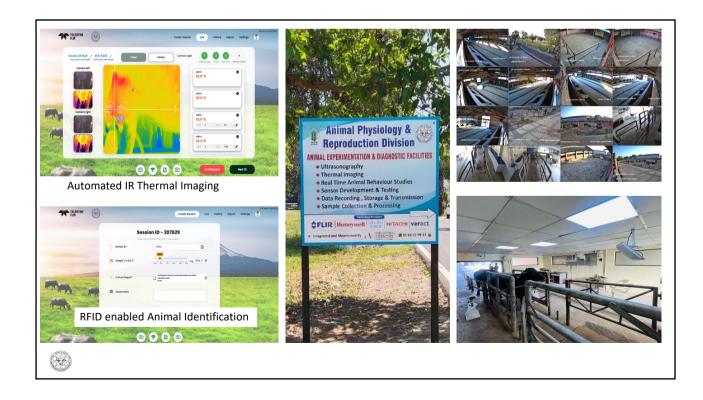
 $Ekta\ Hooda^i, AK\ Balhara^i, Gurpreet^i, Promila\ Sharan^i, AK\ Boora^i, SK\ Phulia^i, Sanjay\ Kumar^i, Yash\ Pal^i,\ MS\ Khatkar^2\ and\ Sunesh\ Balharan^i, AK\ Boora^i, SK\ Phulia^i, Sanjay\ Kumar^i, Yash\ Pal^i,\ MS\ Khatkar^2\ and\ Sunesh\ Balharan^i, Sanjay\ Kumar^i, Yash\ Pal^i,\ MS\ Khatkar^2\ and\ Sunesh\ Balharan^i, Sanjay\ Kumar^i, Yash\ Pal^i,\ MS\ Khatkar^2\ and\ Sunesh\ Balharan^i, Sanjay\ Kumar^i, Yash\ Pal^i,\ MS\ Khatkar^2\ and\ Sunesh\ Balharan^i, Sanjay\ Kumar^i, Yash\ Pal^i,\ MS\ Khatkar^2\ and\ Sunesh\ Balharan^i, Sanjay\ Kumar^i, Yash\ Pal^i,\ MS\ Khatkar^2\ and\ Sunesh\ Balharan^i, Sanjay\ Kumar^i, Yash\ Pal^i,\ MS\ Khatkar^2\ and\ Sunesh\ Balharan^i, Sanjay\ Kumar^i, Yash\ Pal^i,\ MS\ Khatkar^2\ and\ Sunesh\ Balharan^i, Sanjay\ Kumar^i, Yash\ Pal^i,\ MS\ Khatkar^2\ and\ Sunesh\ Balharan^i, Sanjay\ Kumar^i, Yash\ Pal^i,\ MS\ Khatkar^2\ and\ Sunesh\ Sanjay\ Sanjay\$

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5222085

23

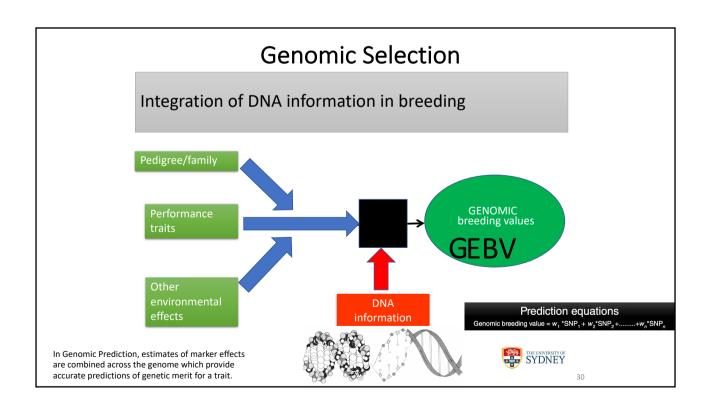



Prediction Accuracy of predicting rectal temperature from thermal imaging data.


- Both eyes: Cor= 0.78

- Left eye only: Cor = 0.78

- Right eye only: Cor= 0.67



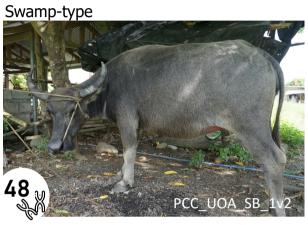
Buffalo genomic resources

29

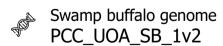
to provide information on the genetics of buffalo populations worldwide to establish the foundational resources to utilize genomic prediction tool to breed more productive buffalos.

There is need for effective selection programs to improve milk and meat production of buffaloes

Problem: Limited genetic resources and genotyping tools



The water buffalo (Bubalus bubalis)


/1000huffalogenomes githu

Data

273 river and 267 swamp short-reads WGS

Water buffalo assemblies

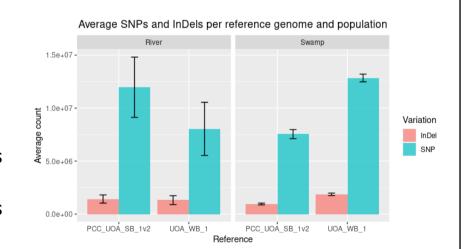
Assembly	Origin	Туре	Size (Gb)	No. of contigs	N50 (Mb)	Reference
PCC_UOA_SB_1v2	Philippines	Swamp	2.90	500	85.5	Pineda et al, 2024
Wang_2023	China	Swamp	2.68	173	72.2	Wang et al., 2023
UOA_WB_1	Italy	River	2.65	953	18.8	Low et al., 2019
NDDB_SH_1	India	River	2.63	1132	9.5	Ananthasayam et al., 2020
CUSA_SWP	China	Swamp	2.63	2003	8.8	Luo et al., 2020
CUSA_RVB	China	River	2.65	3482	3.1	Luo et al., 2020

Disentangling river and swamp buffalo genetic diversity: initial insights from the 1000 Buffalo Genomes Project 3

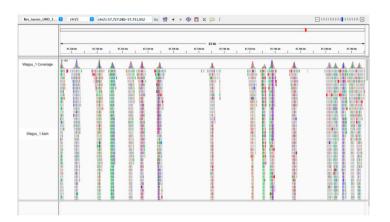
Getionities Project ⊙
Paulene S Pineda, Ester B Flores, Lilian P Villamor, Connie Joyce M Parac
Mehar S Khatkar, Hien To Thu, Timothy P L Smith, Benjamin D Rosen,
Paolo Ajmone-Marsan, Licia Colli ... Show more

GigaScience, Volume 13, 2024, giae053, https://doi.org/10.1093/gigascience/giae053

Results



141 animals


80 swamp type 61 river type

River buffalo as reference: 41,071,165 SNPs

Swamp buffalo as reference: 41,632,997 SNPs

Genotyping using probe capture sequencing

Ren Y, Khatkar MS, MacPhillamy C, Wang H, McEwin RA, Chen T, Pitchford WS, Low WY. Evaluating the Efficacy of Target Capture Sequencing for Genotyping in Cattle. Genes (Basel). 2024 Sep 18;15(9):1218. doi: 10.3390/genes15091218. PMID: 39336809; PMCID: PMC11431841.

Cost-Effective Genotyping Using Low-Coverage Sequencing and Imputation

- Low-Coverage Sequencing (e.g., 1X): Dramatically reduces sequencing costs by generating sparse genetic data.
- Imputation of missing genotypes: Accurately fills in missing genotypes using a high-quality reference panel (e.g., Beagle): .
- **High-Confidence Genotypes:** Achieves dense and accurate genetic data, comparable to more expensive methods.
- Overall Benefit: Enables large-scale genomic studies to be more affordable and feasible.
- Limitation: High cost of data storage and intensive computational power for processing and imputation remain significant challenges.

Reducing Methane Emissions in Buffaloes through Genomic Selection- Proposal

Measure & Manage Data: Standardise methane measurement protocols, record emissions in project buffaloes, and develop an integrated data platform.

Develop Genomic Tools: Design and deploy a low-cost, buffalo (Murrah)-specific SNP panel for genotyping bulls and cows.

Estimate **genetic parameters**, identify **key genes** for methane emission, and develop **genomic prediction** models for methane and economic traits.

Construct a **genomic selection index** balancing methane with economic traits and establish its efficiency in routine use in Indian buffalo breeding programs.

From Barrier to Breakthrough in Precision Buffalo Farming

Data Scarcity: A critical lack of large, standardized datasets for buffalo health, production, and behavior.

Algorithm Gap: A shortage of AI/ML algorithms specifically trained and validated for unique buffalo physiology.

International Data Consortium: Create a global partnership to collect, standardize, and share buffalo-specific data, overcoming the scarcity barrier.

Unique Opportunities for Novel Data Collection and Algorithm Development in Agriculture

- **Fewer Ethical Constraints**: Unlike human health and social settings, agriculture offers a more lenient ethical landscape for data collection.
- **Privacy Risks:** Lower privacy concerns in the agricultural context make it easier to amass large datasets required for training deep learning models.
- **Novel Data Availability:** Agriculture, particularly livestock farming, provides unique opportunities to collect novel types of data, such as rumination sounds or thermal images.
- **Algorithmic Innovation:** The availability of diverse and rich data from PLF paves the way for developing novel deep learning algorithms tailored for specific applications.
- **Untapped Potential:** PLF offers a promising avenue for data scientists and machine learning engineers to apply and test new algorithms, offering a faster route to applications in other domains.

41

Thanks Adelaide University, Australia: ICAR, India: Dr Ashok Balhara Prof Wayne Pitchford Dr T K Datta Dr Lloyd Low Dr Sunesh Balhara Dr A. K. Boora Dr Yongliang Qiao • Dr S.K. Phulia Paulene S Pineda Dr. Mustafa Hassan Kelly Ren Dr Ekta Hooda Gurpreet Dr Promila Sharan IIT, Roorkee, India: • Prof S. Kiran Ambatipudi Prof P M Pradhan C Adelaide University Dr Puneet Kumar

5. PIG PRODUCTION IN VIETNAM: IMPROVEMENT OF PERFORMANCE BY QUANTITATIVE GENETICS AND GENOMIC INFORMATION

ASSOC. PROF. DR. DO DUC LUC VIETNAM NATIONAL UNIVERSITY OF AGRICULTURE

PIG PRODUCTION IN VIETNAM IMPROVEMENT OF PERFORMANCE BY QUANTITATIVE GENETICS AND GENOMIC INFORMATION

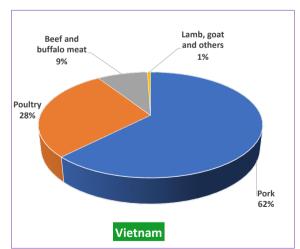
International Symposium Transformation To Sustainable Livestock Production

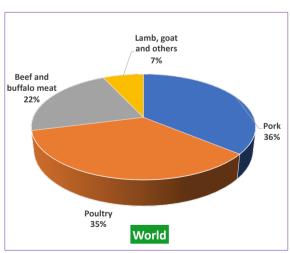
Hanoi, 17 October 2025

DO DUC LUC
Department of Animal Breeding and Genetics
Vietnam National University of Agriculture
+84912370193

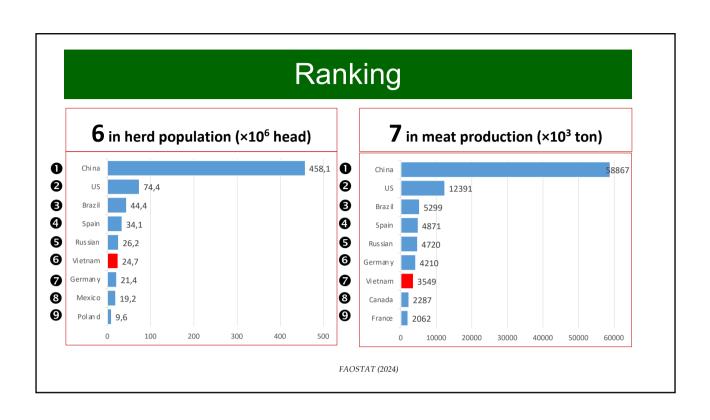
Important of livestock sector in Vietnam

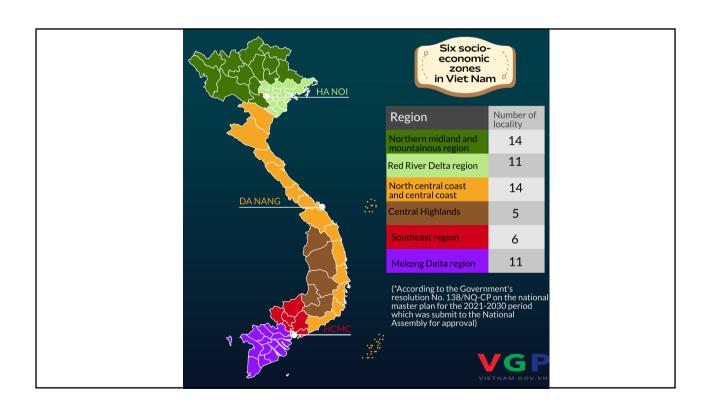
- 11.88% GDP from Agriculture (Crop Production, Animal Production, Sylviculture, Aquaculture) in total GDP
- 25-28% GDP of animal production in Agriculture's GDP

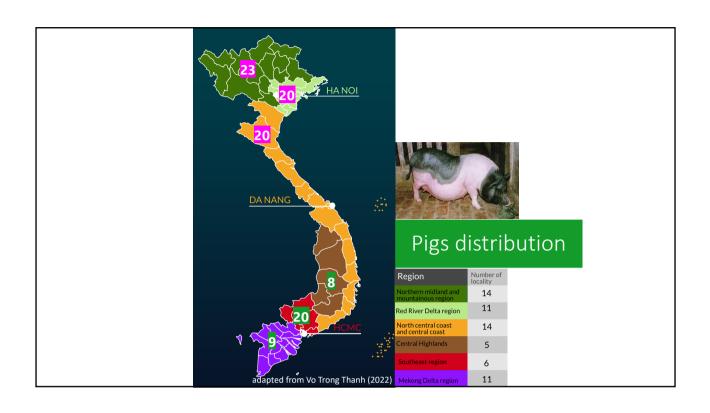

Livestock	population	from	2014 to	2024
-----------	------------	------	---------	------

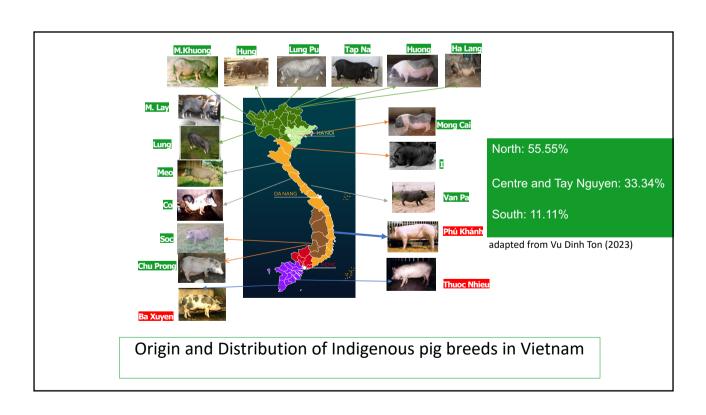

	Buffalo	Cattle (dairy cow) Pig (sow)		Poultry (chicken)	
Year	(×10 ⁶ head)	(×10 ⁶ head)	(×10 ⁶ head)	(×10 ⁶ head)	
2014	2.59	5.38	27.8 (3.9)	353.9	
2015	2.63	5.75 (0.275)	28.9 (4.1)	369.5	
2016	2.64	6.22 (0.283)	30.9 (4.2)	395.5	
2017	2.61	6.29 (0.290)	29.1 (4.0)	407.1	
2018	2.49	6.33 (0.294)	29.8 (4.0)	435.9 (316.9)	
2019	2.39	6.28 (0.318)	20.2 (2.5)	480.3 (382.6)	
2020	2.33	6.33 (0.317)	22.0 (2.6)	512.7 (409.5)	
2021	2.26	6.39 (0.317)	23.2 (3.0)	524.1 (424.2)	
2022	2.23	6.35 (0.352)	24.7 (3.0)	547.0 (444.8)	
2023	2.14	6.33 (0.375 ²)	25.5 (3.1)	559.4	
2024	2.03	6.21 (0.330 ³)	26.5 (3.1)	584.1	
2030			30.0 (2.5) ¹		

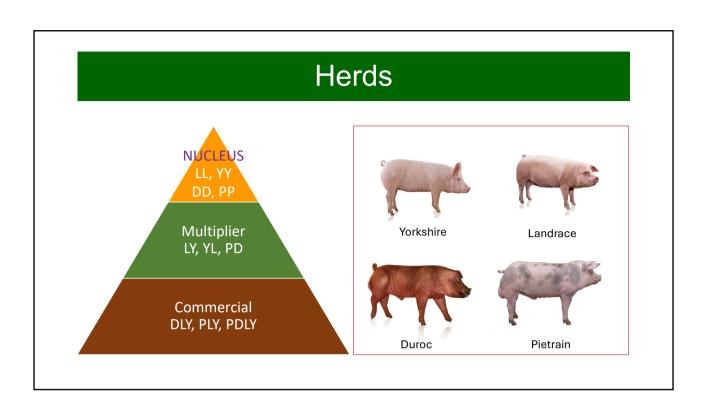
¹Livestock Department (2024), ²https://microbelift.vn/tong-quan-ve-nganh-chan-nuoi-bo-sua-o-nuoc-ta/, GSOV (2025) ³Nguyen Xuan Duong (2025)

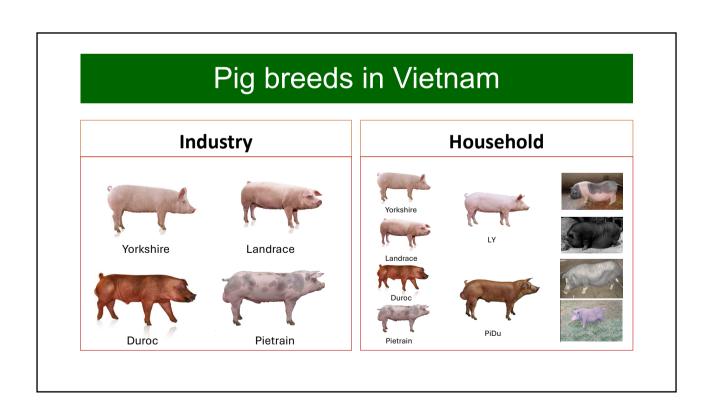



How is important of pork in Vietnam






adapted from Vo Trong Thanh (2022)



Pig population

Population

- **26.6**×10⁶ head (population)
- •3.1×10⁶ sows (11,65%)
- •467 breeding units/ bases

GGP and GP herd

- 240 units for GGP and GP
- •135k sows (4,21%)
 - 20.3k GGP (15%)
 - 114.7k GP (85%)

Improvement of performance

- Importation
- Boars control
- Gilts and sows control
- Quantitative genetics
- Genetic information
 - Genetic markers
 - Genomic selection

Importation

Country

- France
- Denmark
- Canada
- US
- Taiwan
- Cooperl, Axiom, Danbred, Genesus, PIC, Hypor...

Livestock Department(2022)
¹AgriMonitor.vn

GGP and **GP**

- **11%** importation (2015-2020)
- 4.181 heads ~ 2.66×10⁶ USD (2015)
- 43.806 head ~ 27.42×106 USD (2020)
- 4.088 head (2024)1
 - 32567 gilts
 - **832** boars

Performance of imported pigs

Initial population

- Weaned/ sow/ year: 34.4 47.3
- Weaned/litter: 15.3 18.9
- ADG: 800 1200g
- FCR: 1.89 2.50kg
- Lean meat: 60.5 65%

Imported

- Weaned/ sow/ year:
- Weaned/litter: 13.3 14.9
- ADG: 742 959g
- FCR: 2.44 2.65kg
- Lean meat: 60.5 65%

Artificial Insemination (AI)

ΑI

- AI in all industrial farms
- Boars on sow farms (ASF)
- 50 100 sows/ boars
- Fresh semen
- Boar stations
 - Household
 - Industry

Boar control

- Testicle control by ultrasound
 - Young boars
 - Adult boars
- CASA system to control semen quality
- Performance testing

Gilts and sow control

By ultrasound

- Pregnancy control
- Backfat control
- Body condition control

Quantitative genetics

Quantitative genetics

Data records

- Database
 - Belong to each company
 - No exchange between companies
- Records within company
 - Indepedent
 - Intergration with imported company

Traits/ Phenotypes

Reproduction

- Total born/ litter
- Born alive/ litter
- Weaned/ litter
- Weaned/ sow/ year
- Number of teats
- Birth weight
- Maternal behavior
- Semen quality

Production

- ADG
- · Age to 100kg
- · Backfat thickness
- Muscle thickness
- Lean meat
- FCR

Meat quality

- IMF
- pH
- Color
- Drip loss
- Cooking loss
- Tenderness
- Odor

Herds management and Calculation

Management

- Inbreeding control
 - Manually
 - Imported company
 - PigPen
 - MateSel
- Database
 - Excel
 - Imported company
 - PigPen
 - Clouds farm

Calculation

- Selection
 - Phenotype(s)
 - Estimated breeding value
 - Selection index
- Calculation
 - Independent
 - Imported company
- Software
 - PEST, VCE, BLUPF90, HiBLUP
 - Imported company

Genetic markers

Genetic markers

Reproduction

- ESR
- PRLR
- FSHB
- RNF4
- RBP4
- VRTN

Production

- MC4R
- GH
- IGF2

Disease/ stress

- FUT1
- MUC4
- Hal
- ASF?

Quality

- PIT1
- H-FABP
- PIC3K3
- CAST
- MYOG
- Hal
- RN
- HFABP
- FAPB3

Genomic selection

Genomic selection (completed)

Chicken

- Biodiversity (2012-2013)
 - Selection for sustainable conservation of **Ho chicken** breed
 - High-resolution genomic analysis of four local Vietnamese chicken breeds (2021). Journal of Animal Breeding and Genetics 139(5)

Pig

- Disease (2020-2023)
 - Study on natural resistance to AFS of surviving pigs in outbreak areas in Vietnam
 - Unpublish: SNPs related to survivor pigs infected by ASF virus

Genomic selection (in progress)

Pig

- Pig production (2024-2026)
 - Improving reproductive and productive performance of Landrace pigs using genomic information
- Project information
 - Support by ARES-CCD (Belgium)
 - VNUA, ULiege, BAF

Partner

Genomic selection (future project)

Exotic and indigenous

Future project

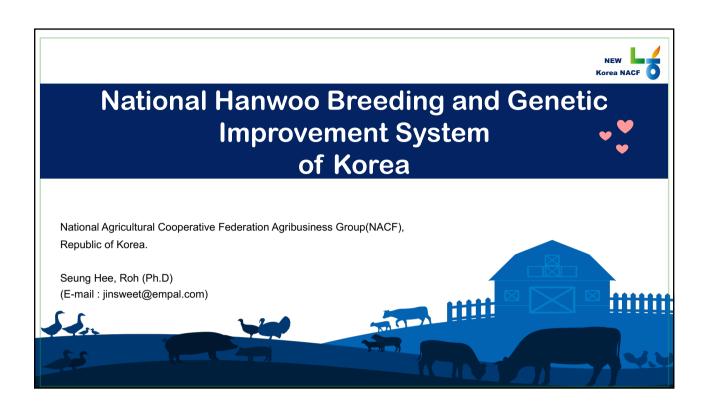
- Pigs companies
 - BAF
 - Dabaco
 - Green Feed
 - Hoa Phat
 - Massan
 - CP
 - Xuan Thien

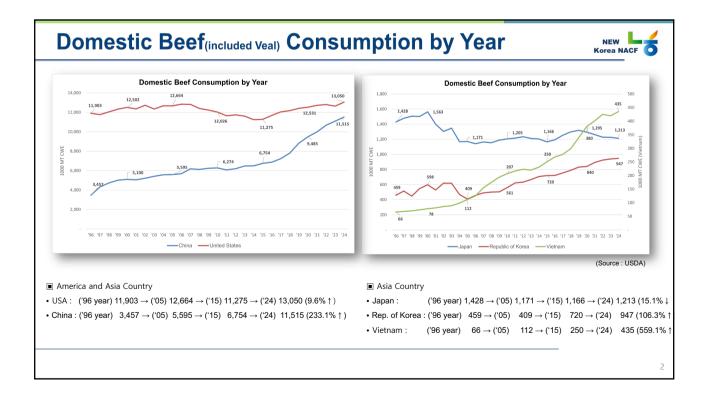
AAAP 2026

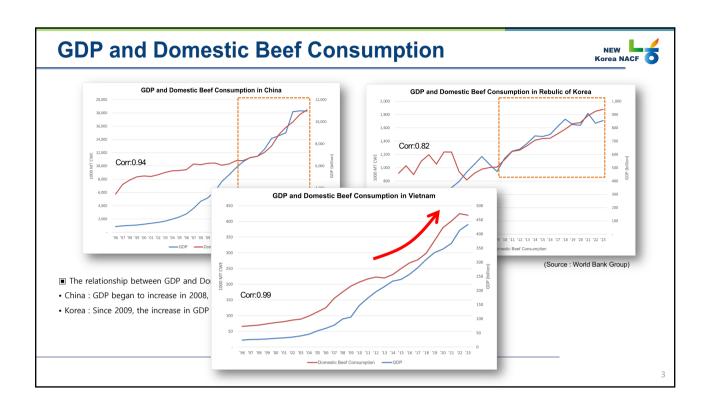
The 21st AAAP (Asian-Australasian Association of Animal Production) Animal Science Congress

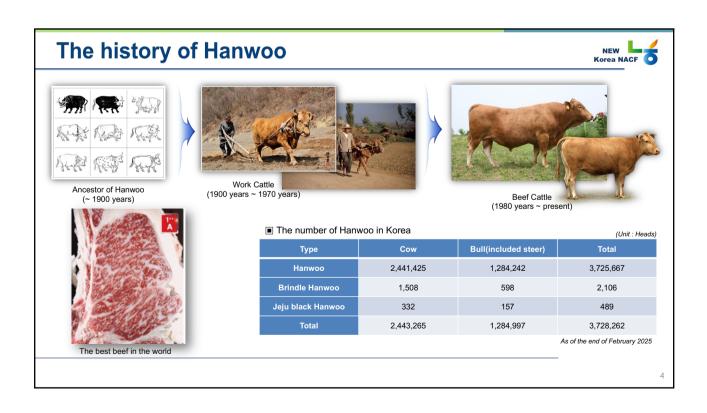
National Convention Center Hanoi, Vietnam **28 to 31 October**

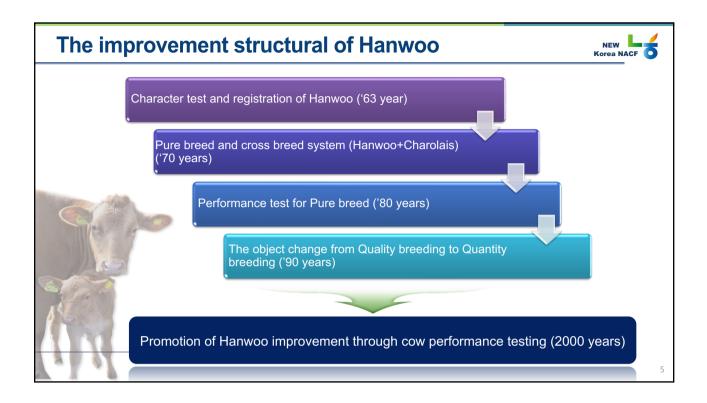
Melbourne Convention and Exhibition Centre Australia

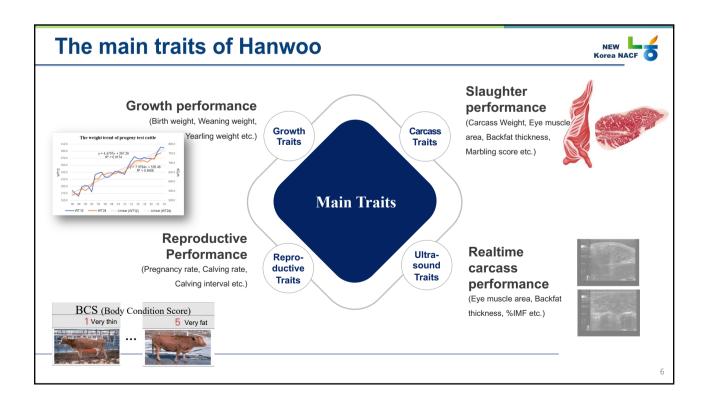

ICC JEJU, Jeju, Korea

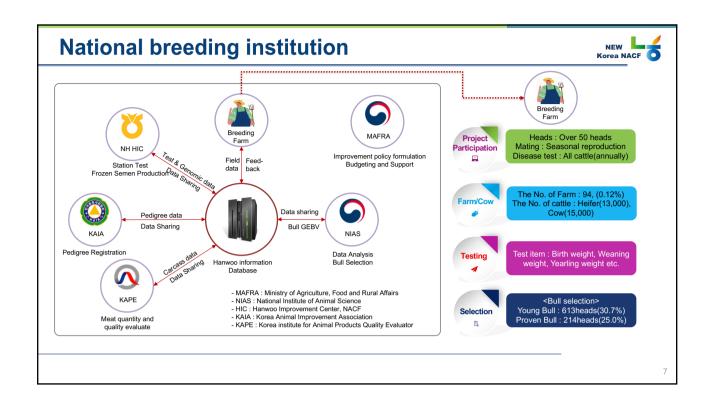

https://aaap2026.org/ddluc@vnua.edu.vn

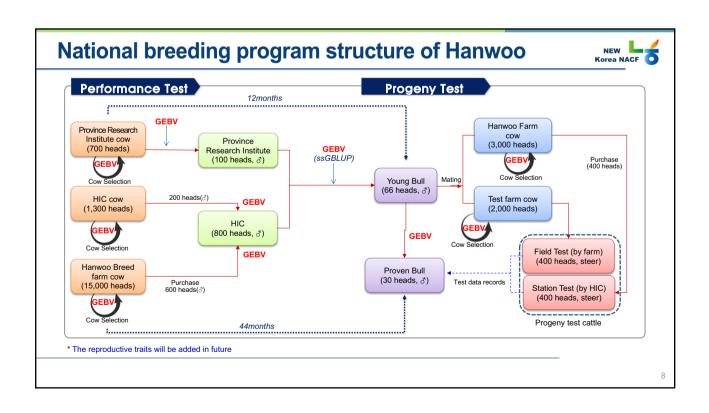


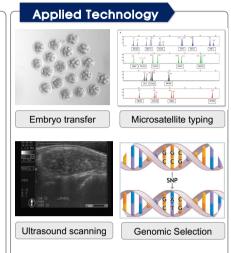

6. NATIONAL HANWOO BREEDING AND GENETIC IMPROVEMENT SYSTEM OF KOREA


ROH SEUNG-HEE
DEPUTY GENERAL MANAGER LIVESTOCK SUPPORT
DEPT., NATIONAL AGRICULTURAL COOPERATIVE
FEDERATION, KOREA

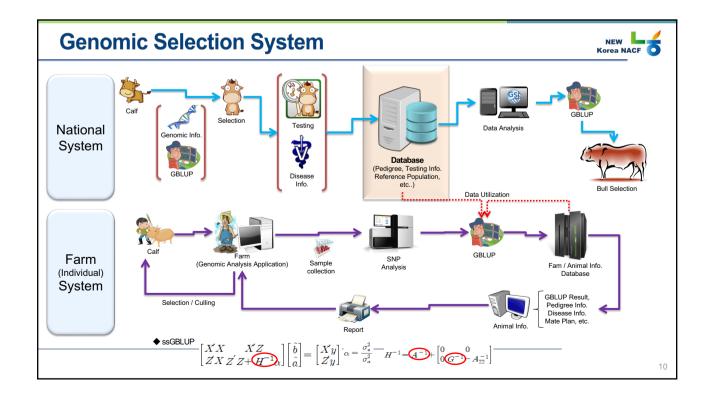


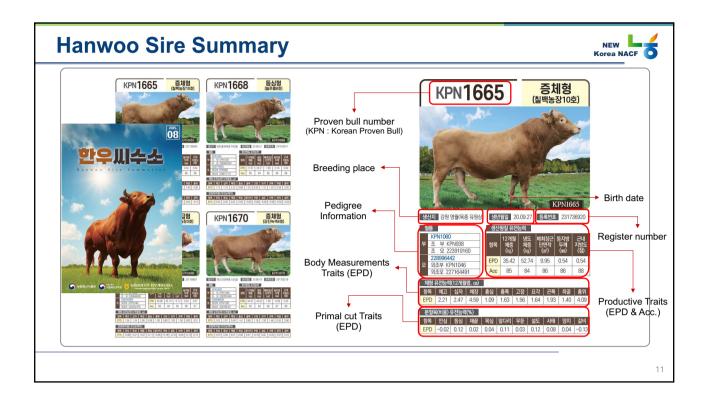


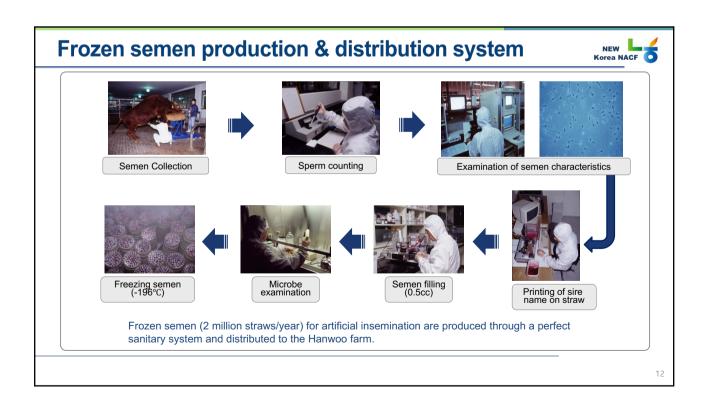


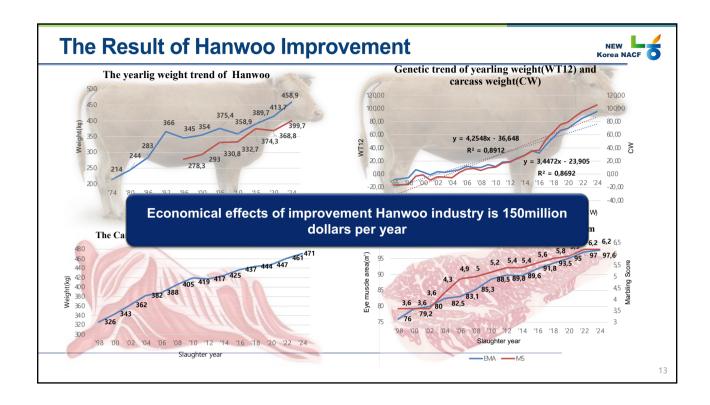


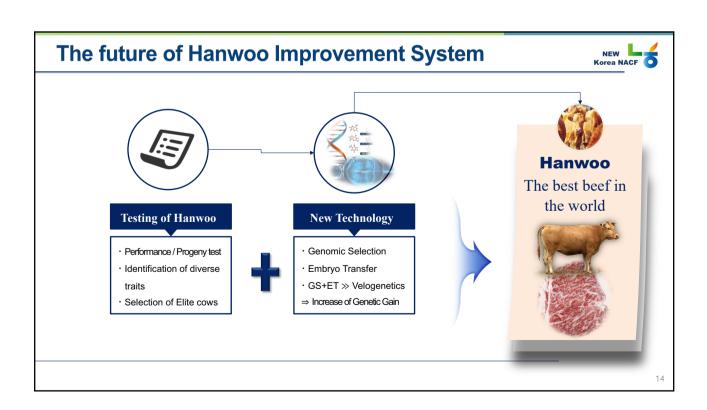
National breeding program of Hanwoo

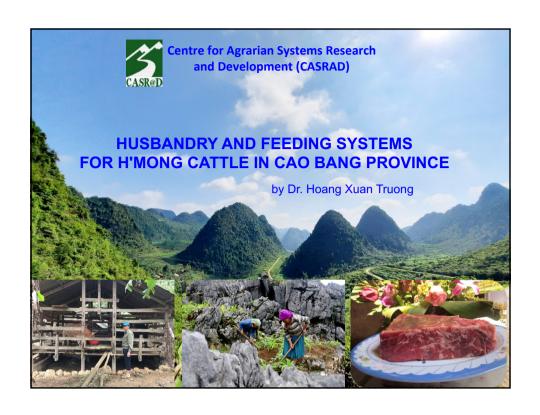


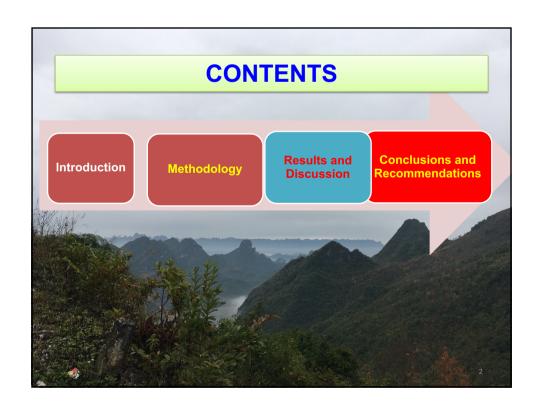

Test records content


- ◆ Performance Test
 - Growth Traits: Weights at birth, 6, 9, 12 months of age
 - Appearance examination
- Body Measurements(12M): Body height, Hip length, Body length, Chest girth, Chest width, Chest depth, Rump length, Hip width, Thurl width, Pin bone width
- ◆ Progeny Test: The castration at 6 months of age and slaughtering at 24 months of age
 - Growth Traits: Weights at birth, 6, 12, 18, 24 months of age
- Appearance examination
- Body Measurements(12M, 18M, 24M): Body height, Hip length, Body length, Chest girth, Chest width, Chest depth, Rump length, Hip width, Thurl width, Pin bone width
- Carcass Traits: Carcass Weight, Eye muscle area, Backfat thickness, Marbling score
- Proximate analysis : Moisture, Crude fat, Crude protein, Crude ash
- Fatty acid analysis: Unsaturated fatty acid(Myristic, Palmitic, Stearic acid), Saturated fatty acid(Oleic, Palmitoleic, Vaccenic, Linoleic, y-Linoleic, Linolenic, Eicosenoic, Arachidonic, Eicosapentaenoic, Docosatetraenoic, Docosahexaenoic acid)
- Meat percent : Primal cut(10 position)




S



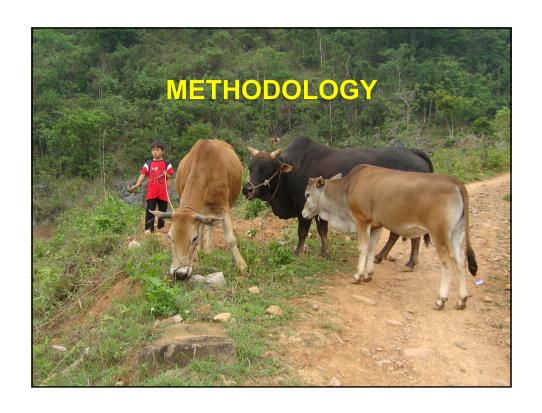


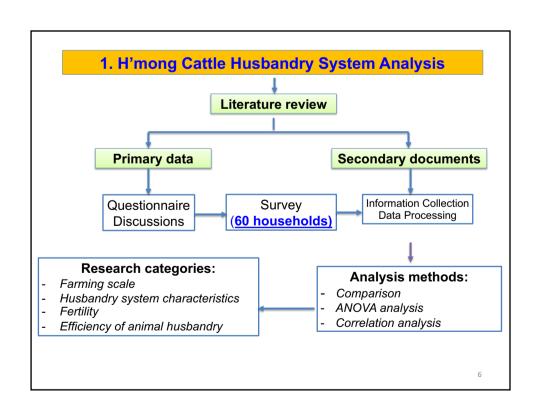
7. HUSBANDRY AND FEEDING SYSTEMS FOR H'MONG CATTLE IN CAO BANG PROVINCE

DR. HOANG XUAN TRUONG NATIONAL INSTITUTE OF ANIMAL SCIENCE

The H'mong people live in the highlands area with harsh weather conditions. Cow raising is the main source of income.

During the winter-spring season, the Hmong people often raise and fatten cows with many types of forestry plants.




Indigenous knowledge and experience in raising and fattening cows have helped the Hmong people survive and develop in mountainous areas where there is little arable land and harsh natural conditions.

To better understand some indigenous knowledge of the Hmong people, it is necessary to conduct the study on "Husbandry and feed systems for H'mong cattle"

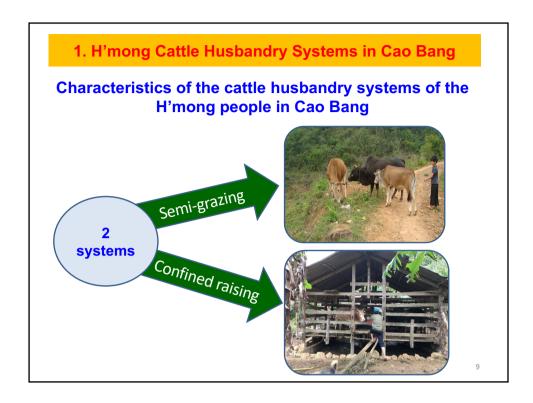
OBJECTIVES

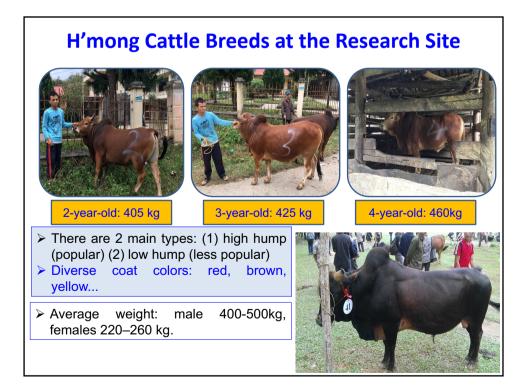
- ✓ Analyze and evaluate the H'mong cattle husbandry systems
- ✓ Identify the main feeds of H'mong cattle

2. Research on Green feed Sources in Winter Season for Raising and Fattening H'mong cattle

Field survey and interview 30 households

Analyzing, Samples sorting, and Data processing;
Using morphologically comparison method, hand held magnifying glass, and taxonomic documents;
Specimens kept at the Vietnam Museum of Nature.

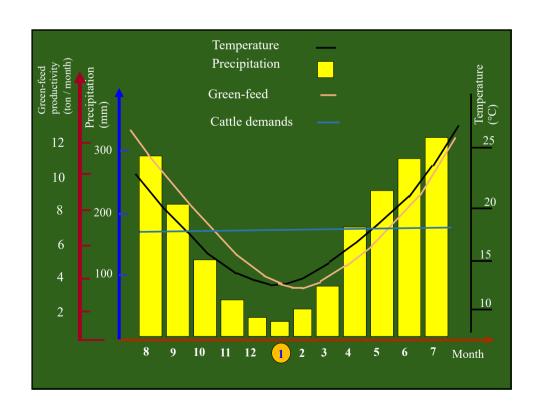

30 households scores each type of feed according to 3 levels: Most favorite feed (3 scores); Favorite feed (2 scores); Additive feed (1 score)


Selecting 6 favorite feeds → Conducting analysis for chemical composition and nutritional value at the Institute of Animal Husbandry

7

Cow Barn

- 100% of households have cow barns separating from the house, 100% wooden floors.
- Wooden floor, 0.8-1.2 m above ground, area from 8-36 m² and usually divided into 2-6 cages, each cage 4-6 m².
- A cow barn can last over 50 years with a system of ironwood flooring, investing from 40-50 mil VND.
- The H'mong people's cow barn style comes from the experience of their ancestors of fighting wild animals. → <u>Indigenous knowledge in cow barn construction</u> → <u>Effective management of breeding stock</u> → <u>Reducing disease</u>



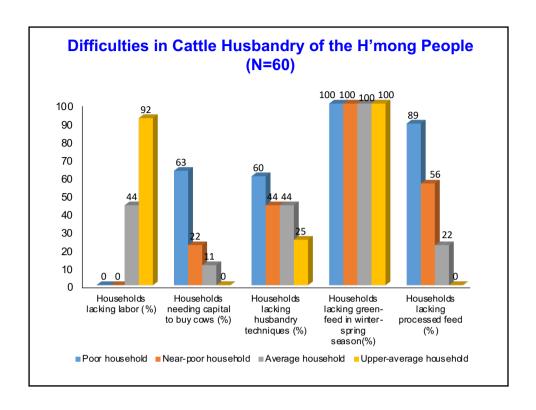
Livestock Production Scale in Surveyed Households (n=60)

Catagorica	Scale			
Categories -	1-2 cows	3-5 cows	≥ 6 cows	
No. of households	51	6	3	
Percentage (%)	85	10	5	
Cow/household	1.60	3.66	9.00	

Feeding and Fattening H'mong Cattle Green-feed: Natural feed plants in the forest; natural grass, cultivated grass, agricultural by-products Processed feed: Corn flour Cooking congee and mix to feed 2-3 times a day.

Marketing

- Cao Bang has 9 wholesale markets, Ha Quang district has 3 markets. For the past 3 years, Tra Linh cattle market has 1000 cattles/session with 400 cows.
- Many households have information about the price of cattle before selling. They are free to sell cattle to whomever they want.
- 60% of cows are sold at home and 40% are brought to market.
- Collectors and interest group members rented trucks to transport cows to the market, 2-6 cows/trip and the rental price was 500,000 VND/trip.
- Large male cows in Cao Bang are mainly sold to China, small cows are sold locally and in Thai Nguyen province.



15

H'mong Cattle	Husbandry	Efficiency
---------------	-----------	------------

No.	Indexes	Dual-purpose Cow (Farmers)	SE	Fatten cows (Collectors)	SE
I	Income/cow	34.287		28.288	
1.1	Income from soil ploughing	1.172	41	0	
1.2	Income from selling cow	30.484	616	28,133	733
1.3	Value from cow dung	2.631	73	155	6.3
Ш	Cost/cow	23.814		27.399	
2.1	Breed	9.145	185	25.333	843
2.2	Processed feed	850	40	990	56.9
2.3	Household labor cost	13.047	126	800	50.6
2.4	Veterinary	57	3	50	1.3
2.5	Depreciation of fixed assets	715	24	225	18
III	Net profit/cow	<u>10.497</u>	<u>458</u>	<u>890</u>	<u>90</u>
IV	Net profit/Household labor	80%		111%	
V	Number of sold cows (cow/household/year)	0,86		12,5	
VI	Mixed income estimated/household/year	20.247	-	21.122	_

16

H'mong Husbandry Culture

The H'mong people have indigenous knowledge that many other ethnic groups do not have:

- Barn and floor are solid, wooden, invested with 40-50 mil VND, and stand over 50 years.
- Good breeds, good breeding stock management
- Households with many cows and big cows are always respected.
- Sharing cows for raising if there are many → This is a typical community culture of the H'mong people that has existed for a long time.
- Fattening techniques for cattle in winter-spring season using native food plants
- Being able to actively participate in the market, know how to evaluate and price cattle before selling

2. Evaluation of Feed Sources For H'mong Cattle Husbandry in Cao Bang

Classification Results of Feed Plants Used by H'mong People for Cattle in Winter

No.	Scientific name	Common	Local	Living	Parts for
		name	name	form	usage
	Acanthaceae	Acanthus family			
1	Strobilanthes dalzielii (W.W. Smith) Benoist		Cuoc gia	BUI	Whole plant
	Araceae	Araceae			
2	Rhaphidophora decursiva (Roxb.) Schott	Giant climbing philodendron	Cau Tong	COL	Leaves
	Araliaceae	Ginseng family			
3	Brassaiopsis glomerulata (Blume) Regel		Cau ta cai	BUI	Leaves
4	Schefflera elliptica (Blume) Harms	Ivy Tree	Bay La	BUI	Leaves
	Arecaceae	Palm family			
5	Arenga pinnata (Wurmb) Merr.	Sugar palm		CAU	Leaves
41					

Specimens of these 41 plants are being kept at the Vietnam Museum of Nature.

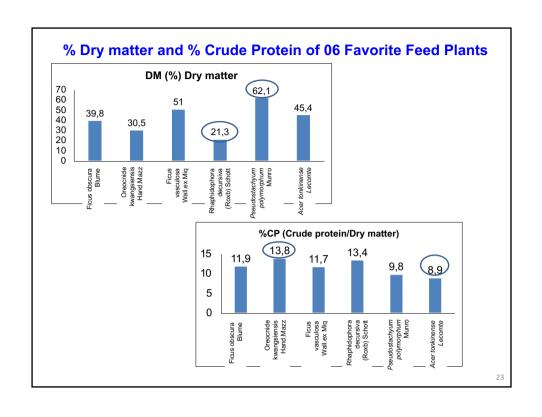
	06 Favorite Feed Plants of H'mong Cattle					
No.	Scientific name	Common name	Local name	Scores		
1	Rhaphidophora decursiva (Roxb) Schott	Giant Rhaphidophora	Cau tong	90		
2	Ficus obscura Blume			60		
3	Ficus vasculosa Wall.ex Miq	Vascular- leaved Fig		60		
4	Pseudostachyum polymorphum Munro	Polymorph Bamboo		90		
5	Oreocnide kwangsiensis Hand.Mazz		May roi	90		
6	Acer tonkinense Lecomte	Tonkin Maple	Sau san	90		
				21		

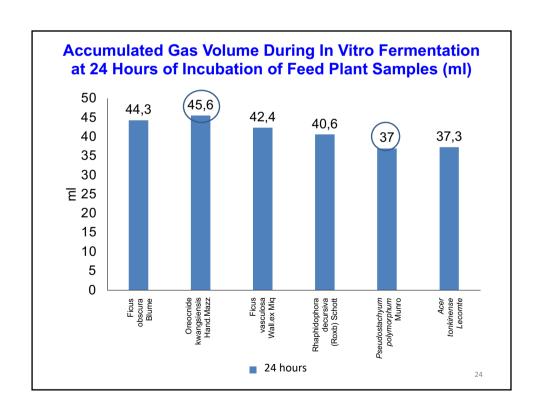
Pictures of 06 Favorite Feed Plants

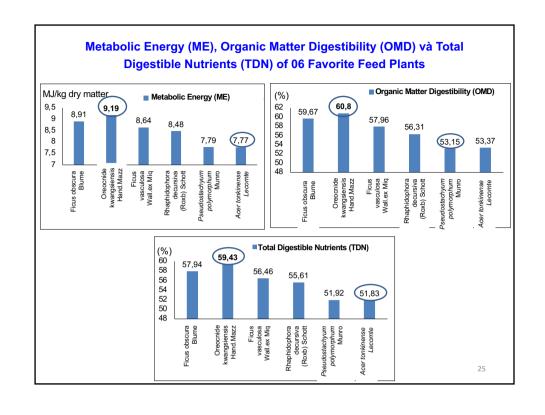
Rhaphidophora decursiva (Roxb.) Schott; Lân tơ uyn; Cầu tong

Pseudostachyum polymorphum Munro Hóp thân tái

Acer tonkinense Lecomte; Thích Bắc Bộ, Sâu Sắn


Ficus vasculosa Wall. ex Miq. Đa lá bóng




Ficus obscura Blume

Oreocnide kwangsiensis Hand.Mazz Chéo béo, Quảng tây, Mảy roi

CONCLUSIONS

- Dual-purpose cattle husbandry is the dominant husbandry practice of H'mong households in Ha Quang, Cao Bang.
- There are 41 different types of plants used as feed for cattle.
- There are 6 types of favorite groups, 6 types of plants can be mixed to ensure the diet for fattening cattle in the winter.
- The basic nutritional value of favorite feed plants has been analyzed.

2

RECOMMENDATIONS

- Maintaining the H'mong cattle husbandry systems with indigenous knowledge of the H'mong people
- For livestock farms and households, fattening cattle at 24 months of age should be done with diet 2 (DM: 47.63%; Crude protein: 12.07g and ME: 9.9 MJ).
- Conducting study on the potential for scaling up the cultivation of the six preferred feed plants.
- Establishing Geographical Indication for H'mong beef products in the mountainous region of Northern Vietnam.

28

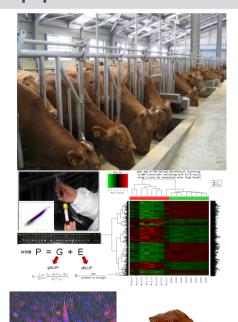
THANK YOU!

29

8. CURRENT AND PROSPECTS OF PRECISION MANAGEMENT IN SOUTH KOREA BEEF PRODUCTION

PROF. CHUNG KI-YONG KOREA NATIONAL UNIVERSITY OF AGRICULTURE AND FISHERIES, KOREA

Current and Prospects of Precision Management in South Korea Beef Production



Korea National University of Agriculture and Fisheries Department of Livestock

CHUNG, KI YONG

2025-10-17 KOICA-VNUA

목차

Contents

- I. Global Issue of Beef Cattle
- **II. History of Hanwoo Cattle Industry**
- III. Genomic Data based Agriculture
- IV. Application of Precision Management
- V. Next Goal

1. Global Issue of Beef Cattle

Green Revolution and Food Production

Precision Agriculture

Prescriptive planting: 처방농업

- Target of global frontiers (Monsanto/US, Wagennigen/Nethaland, Pitech/Israel)
 - Big data, AI, Deep learning Tech
 - Reduce environmental facts (Land, Insect, Temperature, Broadcasting etc.)
 - Perfect growth control for individual corps(efficiency rate 30% improvement)
 - * Relative to high global level 73% technically delayed 4.2 years (RDA report)

 **OFFICE OF THE PROPERTY OF A PRINCIPLE OF A P

1. Global Issue of Beef Cattle World wide beef cattle breedtype 애버딘 앵거스(Aberdeen Angus) 샤로레(Charolais) 헤어포트(Hereford) Hanwoo 리무진(Limousine) 켈브비(Gelbvieh) 브란거스(Brangus) 레트앵거스(Red angus) **Chikso** Jeju Black Cattle **Brahman Nelore** KOTE National University of Agriculture and Fisheries

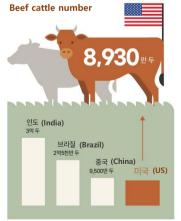
1. Global Issue of Beef Cattle

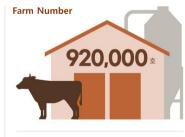
High Quality Meat is ...

Hanwoo

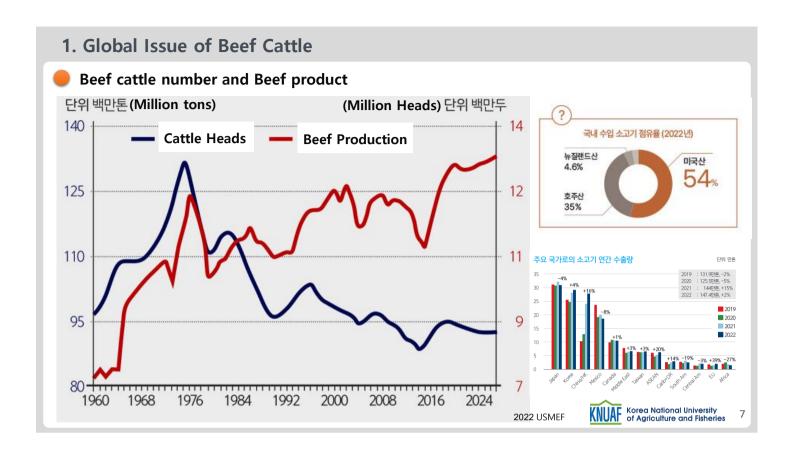
1. Global Issue of Beef Cattle

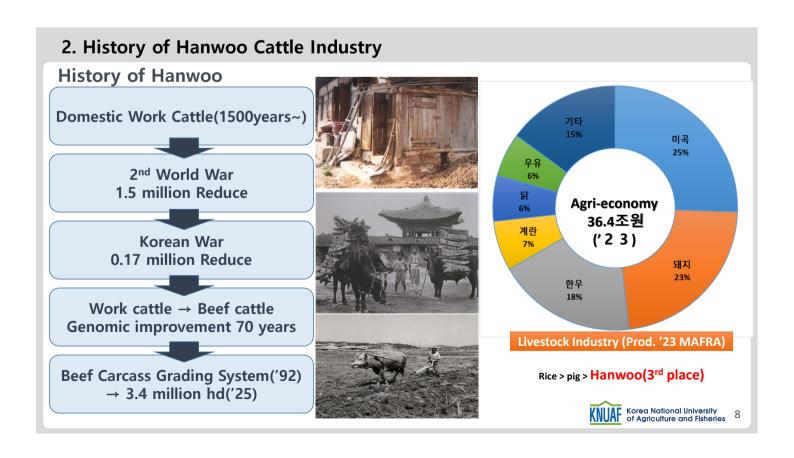
Beef product area and process in US

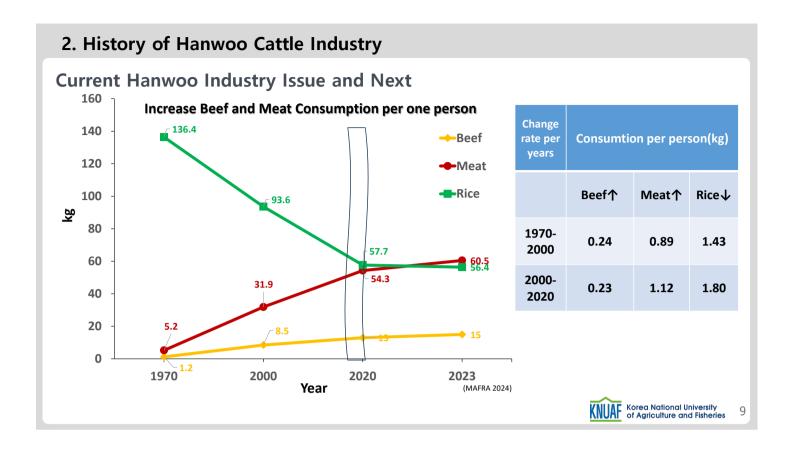




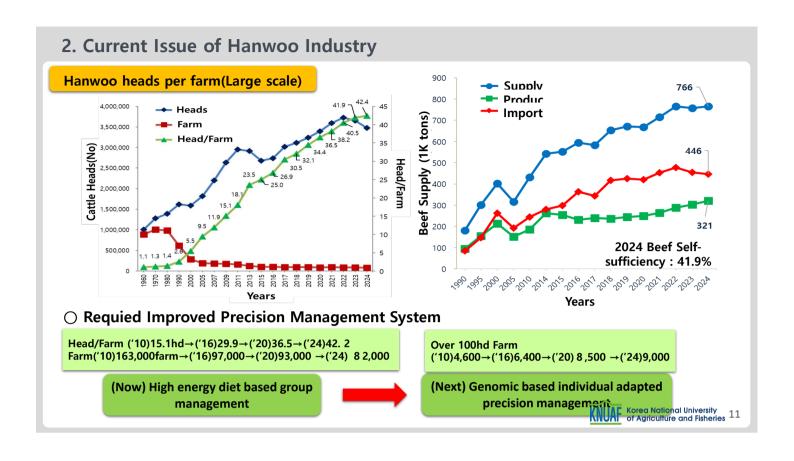
Beef Industry Information(202 3)

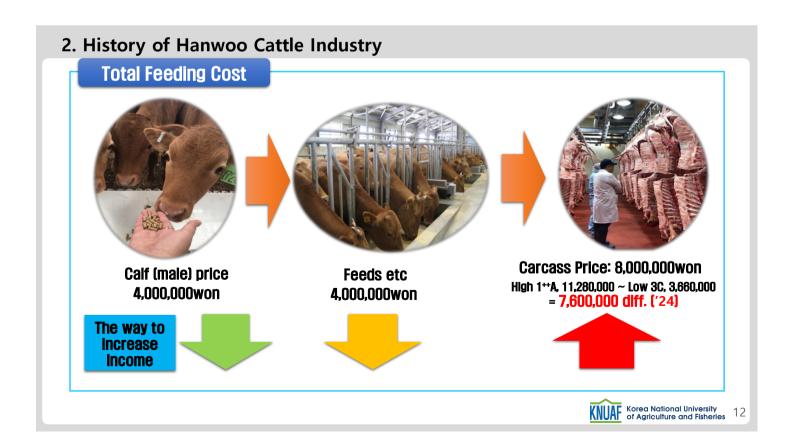



Top5 사육 주(STATE)



2022 USMEF



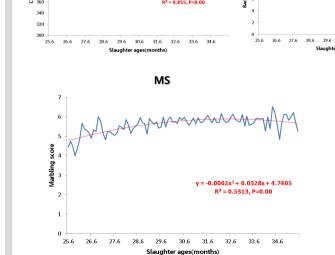


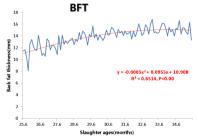
2. History of Hanwoo Cattle Industry

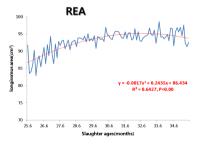
Total Feed Amount

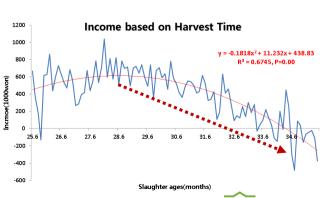
품목	농협사료 (안심한우)	협회OEM (대한한우)	서울축산농협 (한우마춤+)	퓨리나 (맥스-효율형)	천하제일 (상상플러스-대형)	선진 (원더풀)
Feeding Periods	22	22	23	22	23	22
Target WT	750	750	765	785	800	763
Feed Amounts	5137.6	5152.8	5198.4	4894.4	5213.6	5350.4

Total Feed Amounts

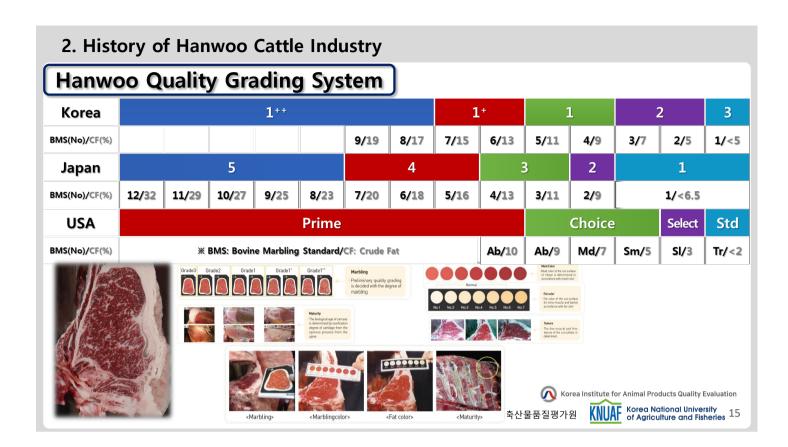


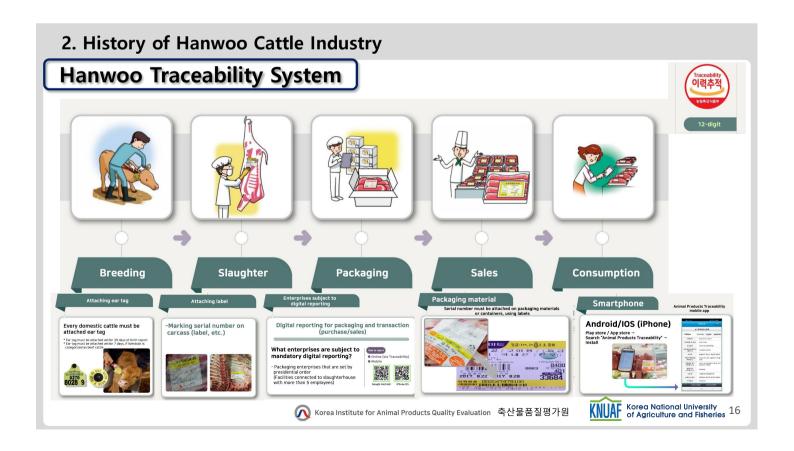

X = 206 box = 5,145 kg

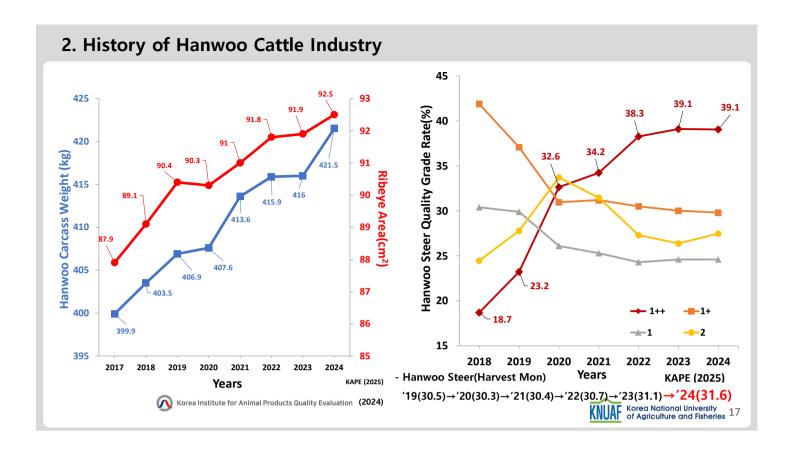

Korea National University of Agriculture and Fisheries 13

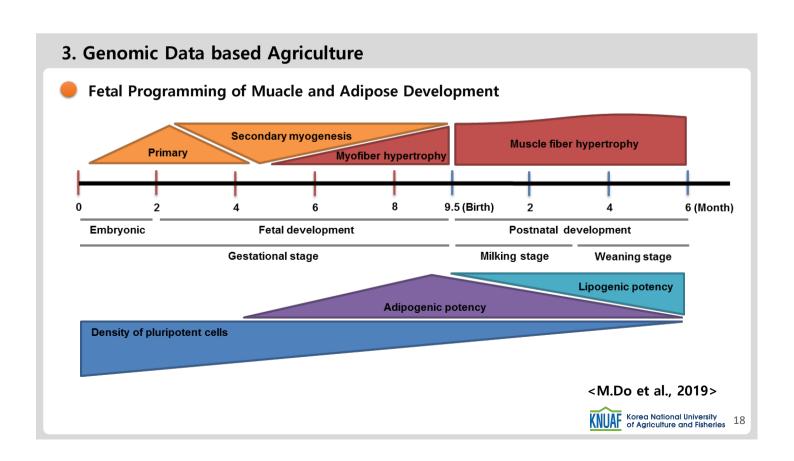


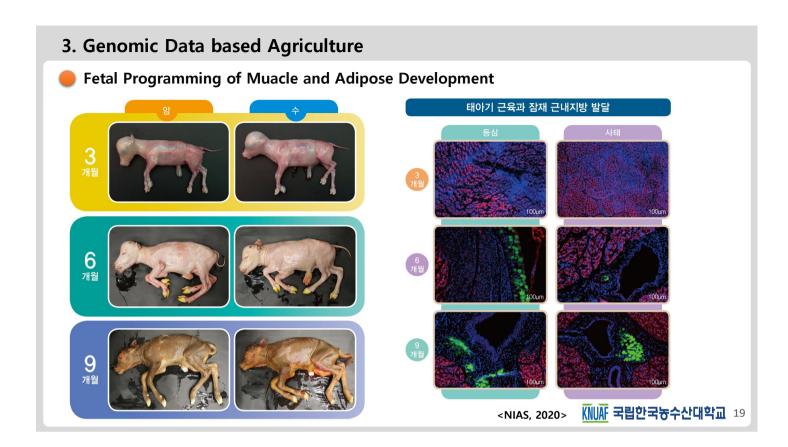
480 460

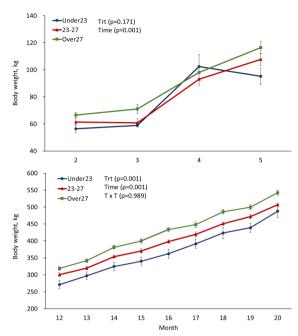


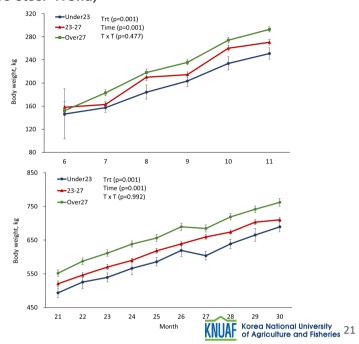





NIAS, 2016

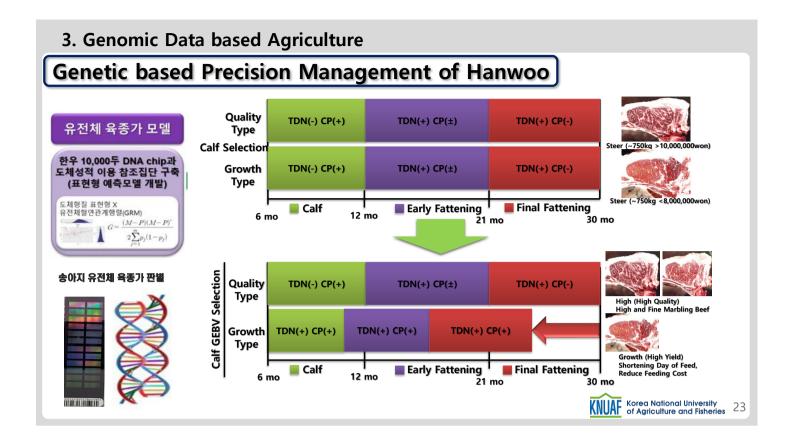

KOTE National University of Agriculture and Fisheries 14

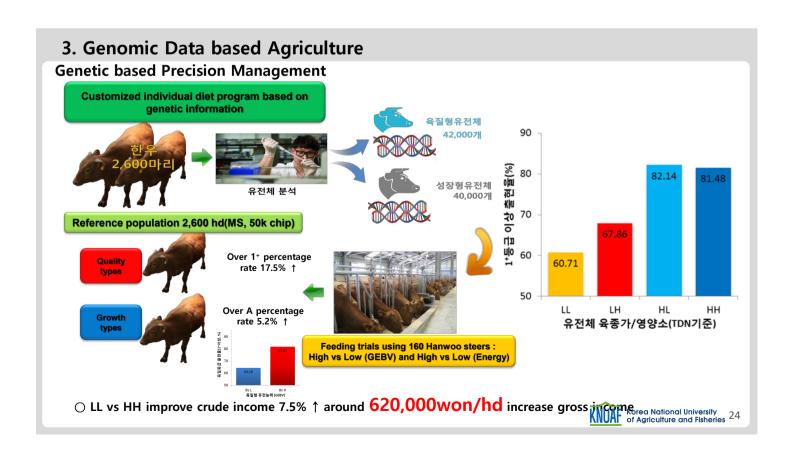


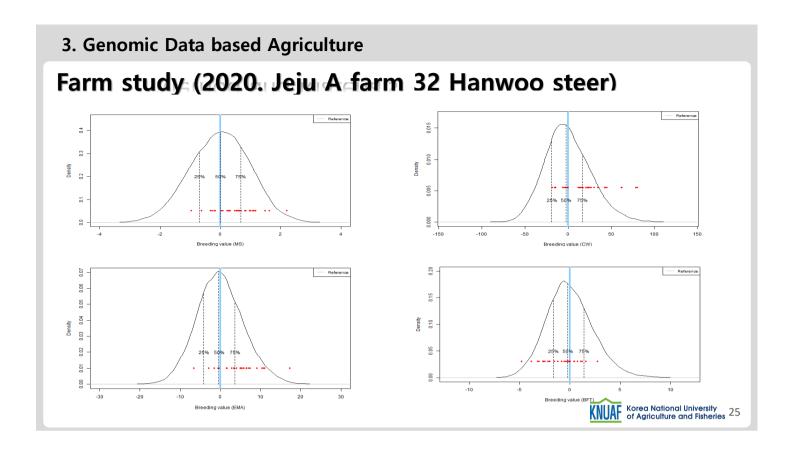


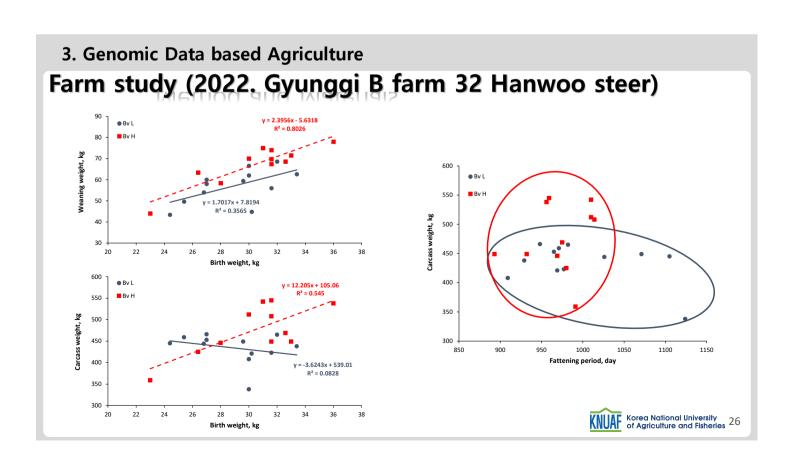
3. Genomic Data based Agriculture **Muscle and Fat Development (Fetal Programming)** • Muscle satellite cell Tissue injury Myofiber Adipocyte hyperplasia Enhance marbling through genetic, nutrition and other strategies M. DU et al., 2010. Satellite cell Activated satellite cell Proliferating myoblasts 9개월령 태아 한우(수) 등심 9개월령 태아 한우(암) 등심 Differentiated myotubes 출처 - http://www.hindawi.com/journals/mi/2013/491497/fig1/ KOrea National University of Agriculture and Fisheries 20

3. Genomic Data based Agriculture






3. Genomic Data based Agriculture

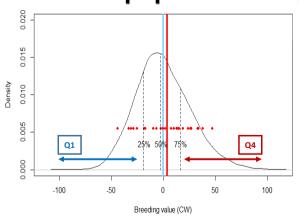

Carcass Characteristics of New Born Cattle (Hanwoo steer 173hd)

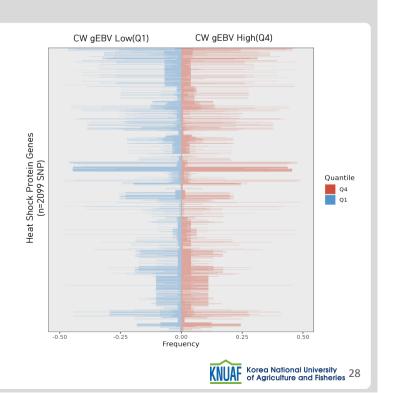
	Under 23	23-27	Over 27	SEM	p-value
Body weight, kg	20.48	25.42	30.22	2.81	0.001
Carcass weight, kg	383.00	400.97	430.19	13.75	0.001
Back-fat thickness, mm	10.33	11.72	12.78	0.71	0.032
Rib-eye area, cm ²	81.07	85.97	89.68	2.49	0.001
Dressing, %	66.29	65.42	64.33	0.56	0.010
Marbling score	5.44	5.50	5.89	0.14	0.407



3. Genomic Data based Agriculture-Heat Stress

Hanwoo Heat Stress Respond(30 Hanwoo steer)

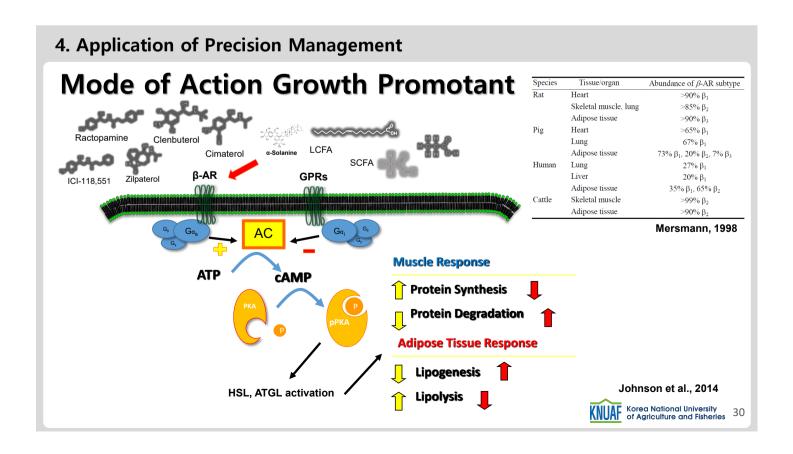



Bv CW	Bv H	Bv L	SEM	P-value
Feeding Periods	378	383	2.32	0.408
Live Weight, kg	768.43	726.57	20.93	0.072
CW, kg	460.07	432.79	13.64	0.051
BFT, mm	13.86	12.43	0.71	0.471
REA, cm ²	94.71	94.29	0.21	0.913
MS	6.64	6.07	0.29	0.321
Quality Grade (1++: 1+: 1 : 2, %)	43:36:21:0	36 : 36 : 28 : 0	•	•
Yield Grade (A : B : C, %)	22 : 64 : 14	43 : 43 : 10		
Auction Price, kg/won	22,909	22,235	337	0.317
Total Price, won	10,603,648	9,718,220	442,7	0.056

KNUAF Korea National University of Agriculture and Fisheries 27

3. Genomic Data based Agriculture

HSP 27, 60, 70, 90 SNP 2099 search (Hanwoo reference population 20k)



4. Application of Precision Management

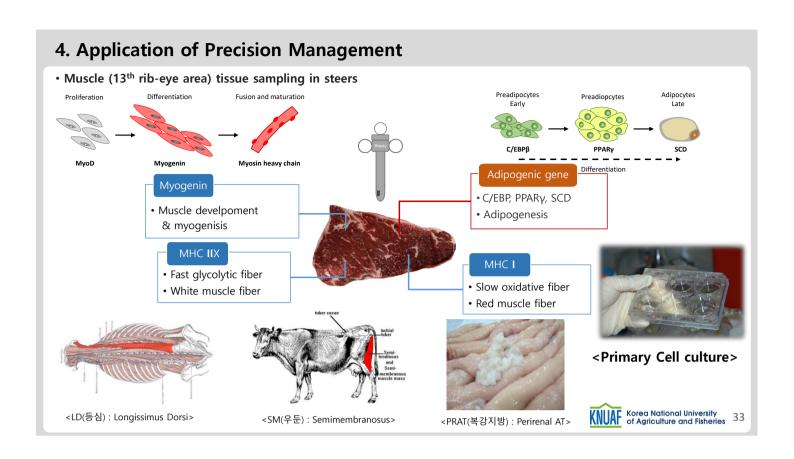
Years	Author	Affiliation	Paper Numbers
1970 ~	Allen, R. E.	n, R. E. University of Arizona	
	Dodson, M. V.	Washington State University	52
	Dayton, W. R	University of Minnesota	35
1980 ~	Greene, E. A	University of Arizona	12
	White, M. E.	University of Minnesota	37
	McFarland, D. C	South Dakota State University	56
	Grant, A. L.	Virginia Tech	19
	Gerrard, D. E.	Virginia Tech	12
1990 ~	Hathaway, M. R.	University of Minnesota	31
1990	Johnson, S. E.	University of Arizona	29
	Johnson, B. J.	Texas Tech University	51
	Velleman, S. G	Ohio State University	63
	M. Du	Washington State University	184
2000 ~	Kamanga-Sollo, E.	University of Minnesota	18
	Weber, W. J.	University of Minnesota	4

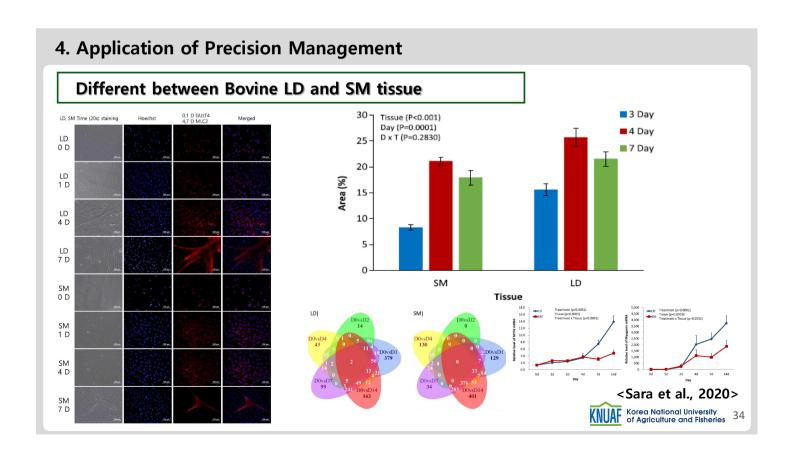
KNUAF Korea National University of Agriculture and Fisheries 29

4. Application of Precision Management

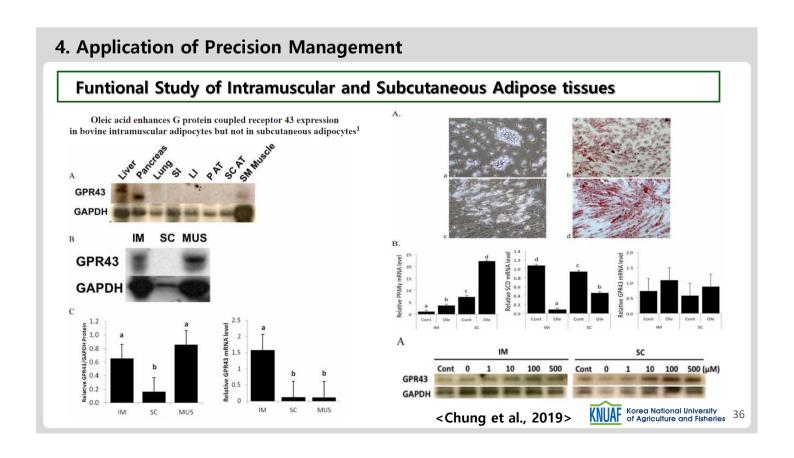
Growth Stimulation

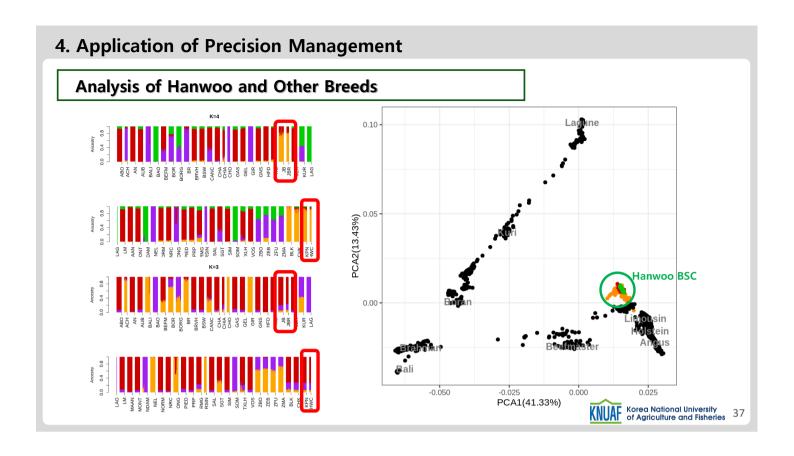
- Muscle injury
- **Implants**
 - 17β- Estradiol
 - Trenbolone Acetate
- O β-Adrenergic agonist
 - Clenbuterol
 - Ractopamin hydrochloride : Optaflexx (Elanco)
 - Zilpaterol hydrochloride : Zilmax (Intervet)

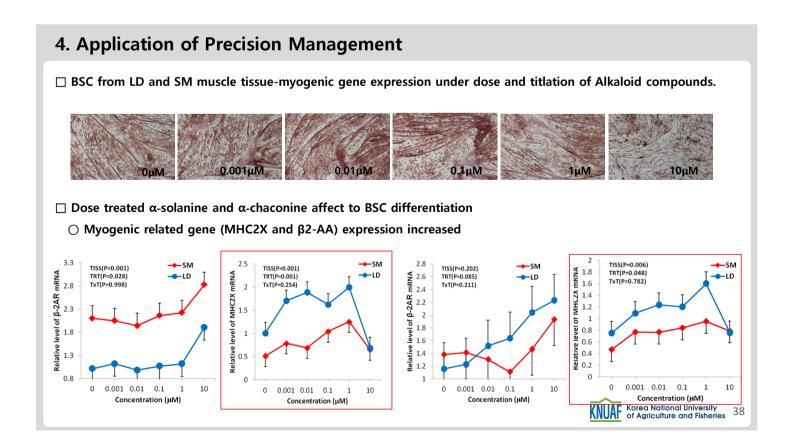


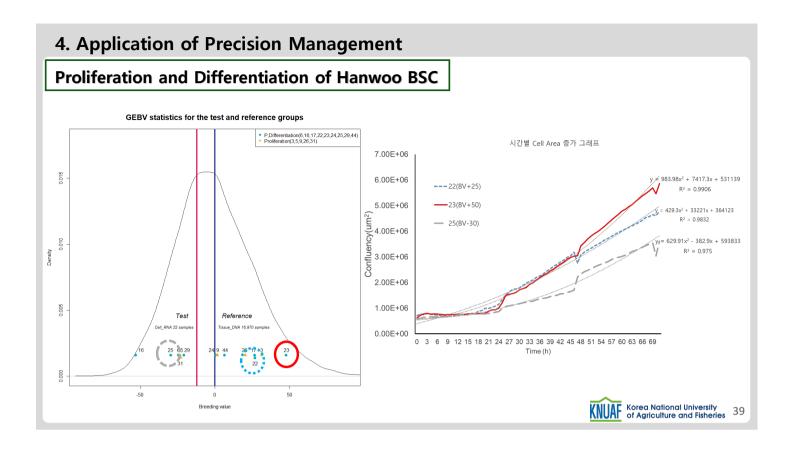


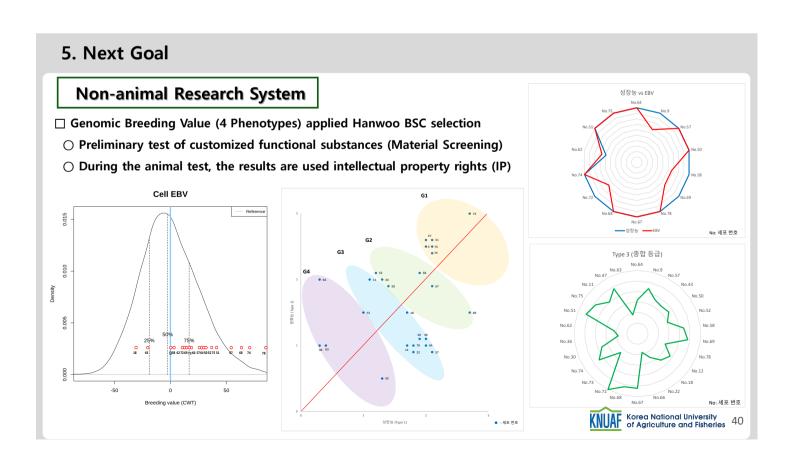
4. Application of Precision Management

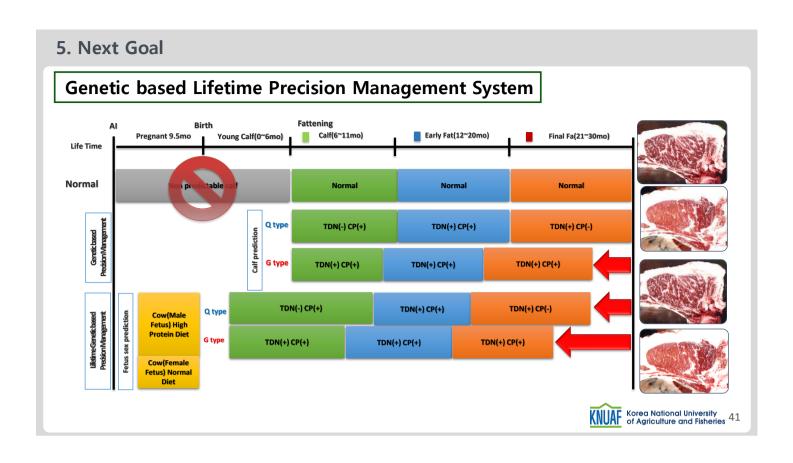

Mode of Action Growth Promotant

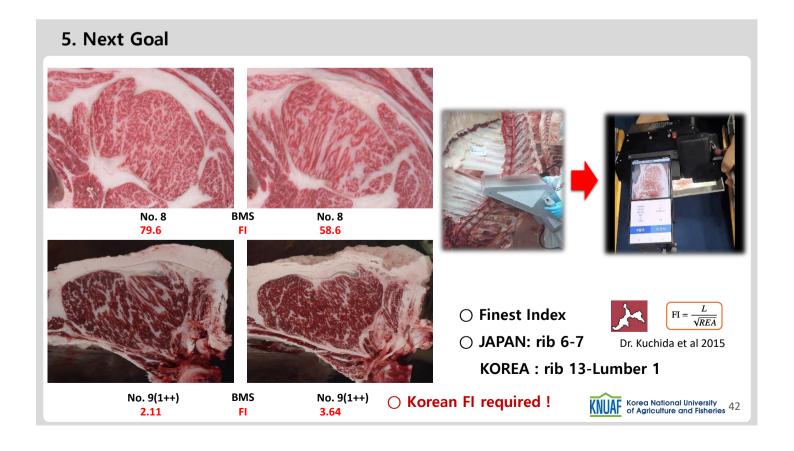

| Components | Componen

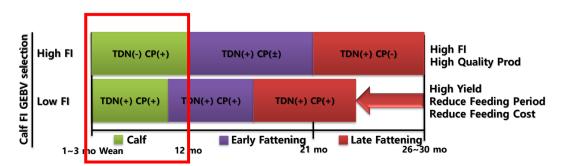





4. Application of Precision Management Transdifferentiation from Muscle to Fat Co-culture system of Muscle and Fat Melengestrol acetate enhances adipogenic gene expression in cultured muscle-derived cells Relative myogenin mRNA level Relative C/EBPB mRNA level Proliferation Co- or single-culture 50 Differentiation Bovine preadipocytes: 5% FBS/DMEM with IOPD (10 µg/mL insulin, 100 µM oleic 1 µg/mL pioglitazone, and 1 µg/m dexamethasone) 40 1% Ab in DMEM with 40 μM trans-10, cis-12 CLA and/or 5 mM arginine 1% Antibiotics (Ab) in 10% FBS/DMEM 3. 30 Relative PPARy 2 20 Bovine satellite cells: 3% horse serum/DMEM with IOPD with 40 µM *trans*-10, *cis*-12 CLA and/or 5 mM arginine 10 IOC <Choi et al., 2013> Korea National University of Agriculture and Fisheries 35 J. Anim. Sci. 2009. 87:3897–3904 doi:10.2527/jas.2008-1645 © 2009 American Society of Animal Science. All rights reserved.







State | Part | Part

5. Next Goal

Hanwoo Fine Index based Precision Management

- ☐ Development of FI GEBV based precision management system
 - FI GEBV and castration date (4mo vs 7mo) relationship
 - FI GEBV and weaning date (1mo vs 3mo) relationship
 - Development of FI GEBV based Individual precision management system

Summary

- Research for functional gene expression based on GEBV
 - Genetic based precise management system
- Sustainable farm based individual management system
 - Reduce feeding cost, periods, and provide labor intensive system
- Development technology for enhancing livestock efficiency
 - Multidisciplinary approach of Animal, Food, Engineering Sciences (ex. Traceability system)

Research collaborators

Dr. Bradley J. Johnson at Texas Tech University

Dr. Stephen B. Smith at Texas A&M University

Dr. Brad Kim at Purdue University

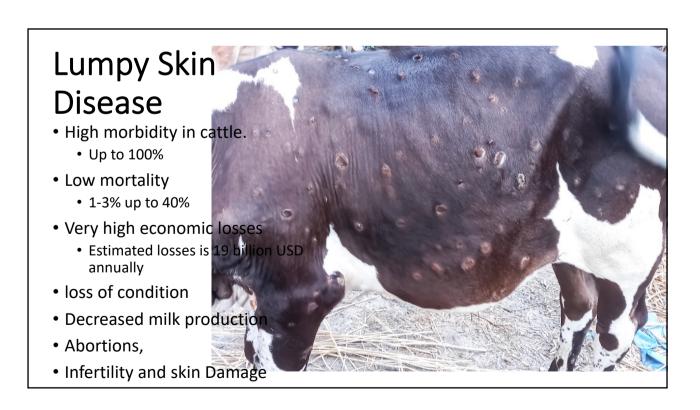
Drs. J. K. Kim and D. H. Kang at Michigan State University

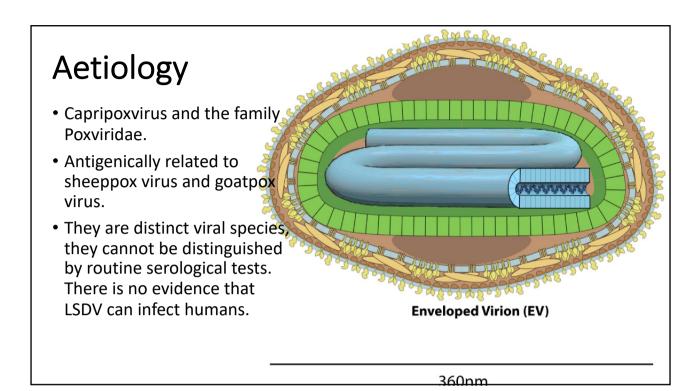
Dr. Takafumi Gotoh at Hokkaido University

Dr. Seung Hwan Lee at Chung Nam University

Dr. Kesinee Gatphayak at Chiang Mai University

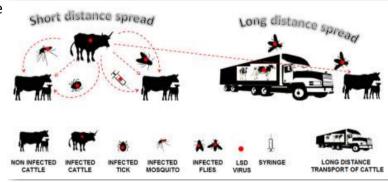
Dr. Bo Hye Park at ©Kai Bio and ©Seawith



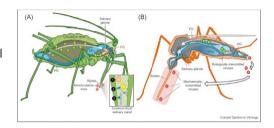

Thank you

9. LUMPY SKIN DISEASE FROM A LOCALIZED INFECTION TO A GLOBAL THREAT

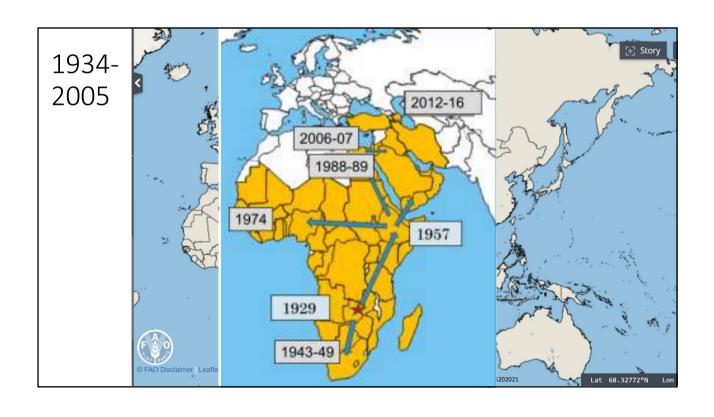
DR. FARHID HEMMATZADEH THE UNIVERSITY OF ADELAIDE AUSTRALIA



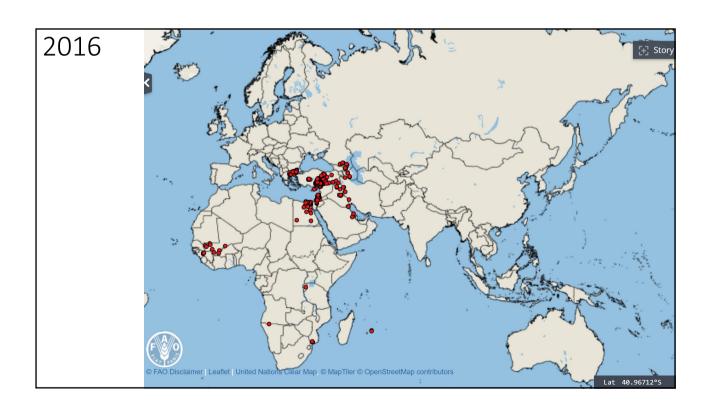
Transmission of LSD

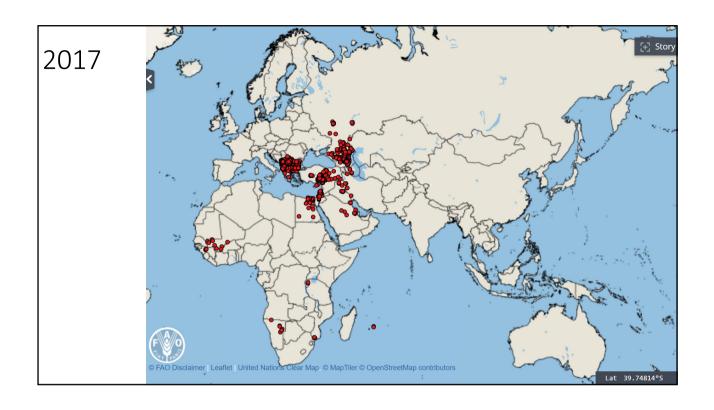

- Long distance:
 - Animal movements is the highest risk for transmission
- Short distance:
 - Insect vector
 - Climate change
- Direct and indirect contact facilitate the transmission.

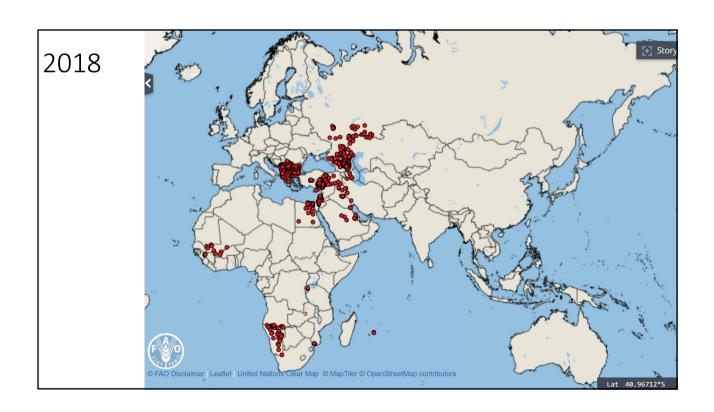
LSD Viral vectors and reservoirs

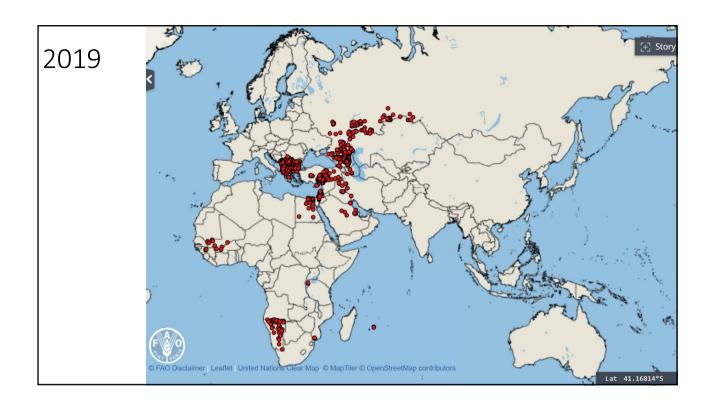

- The main viral vectors are blood-feeding insects
 - Flies
 - MosquitoesBiological

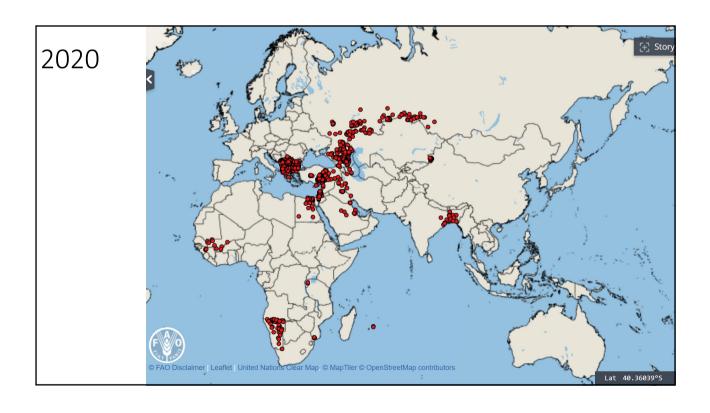
 - Mechanical

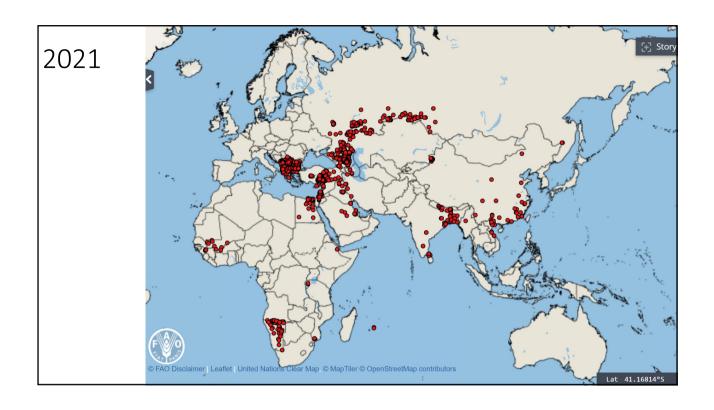

• Tick

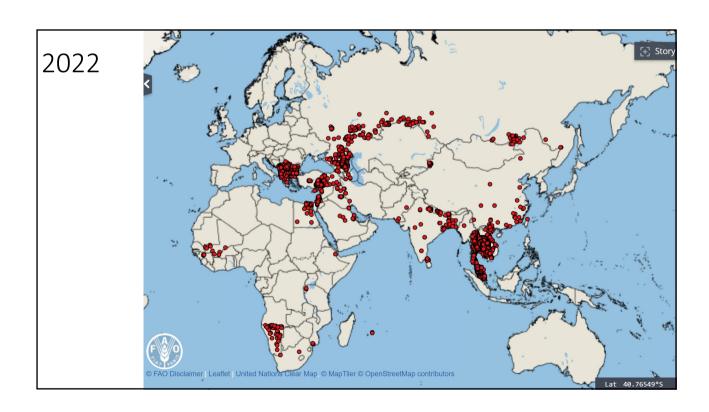


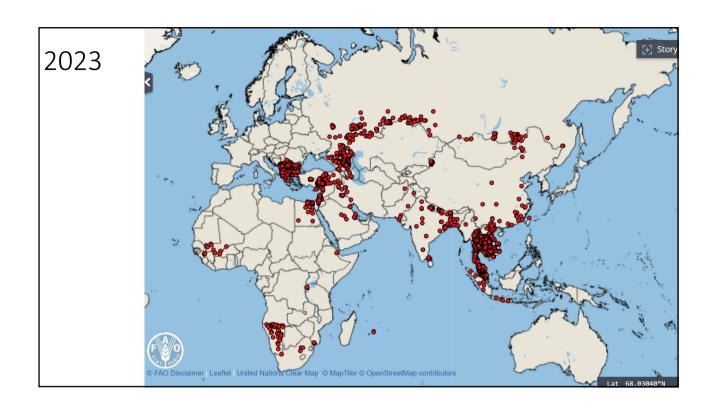


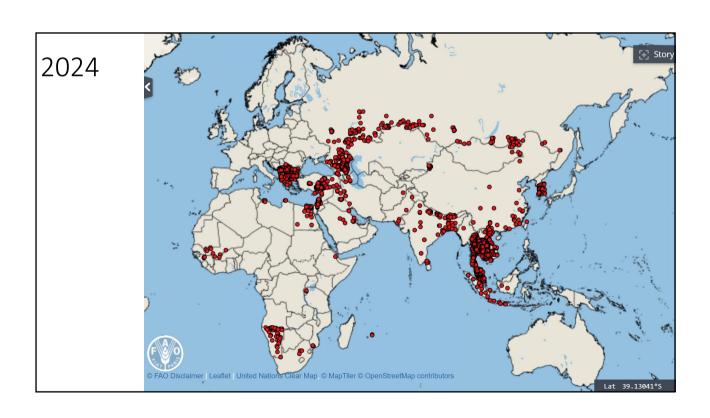


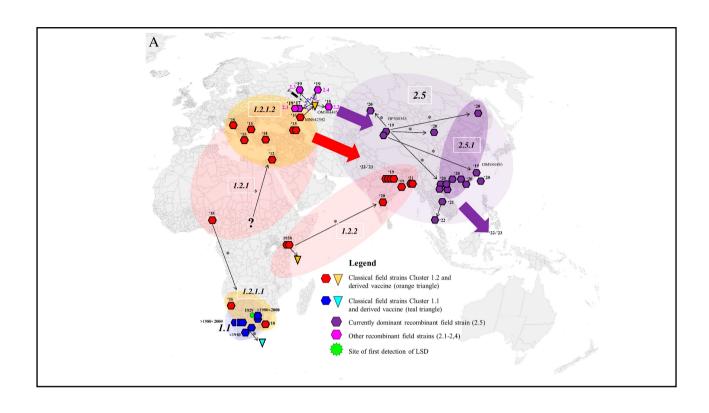


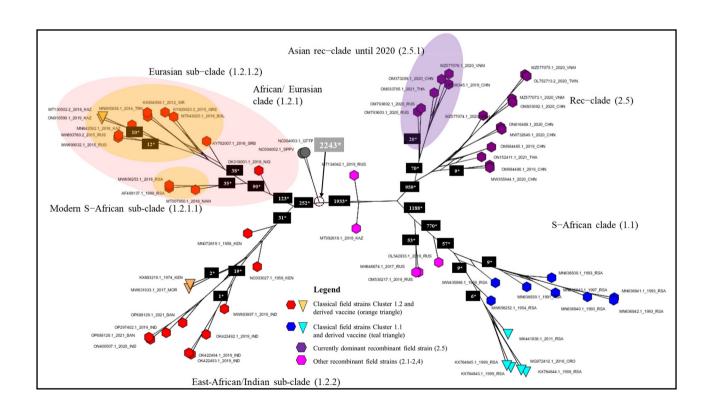


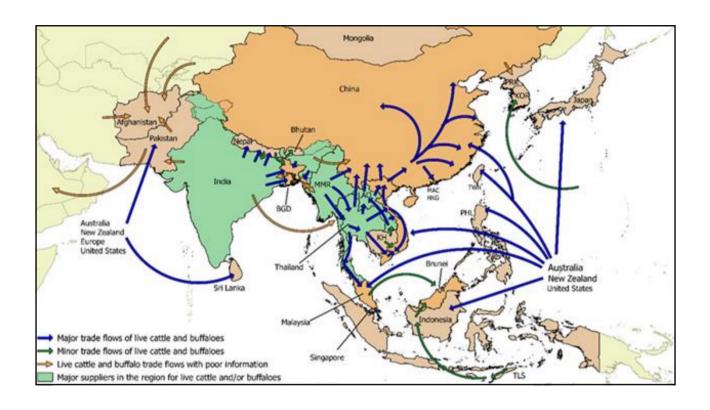






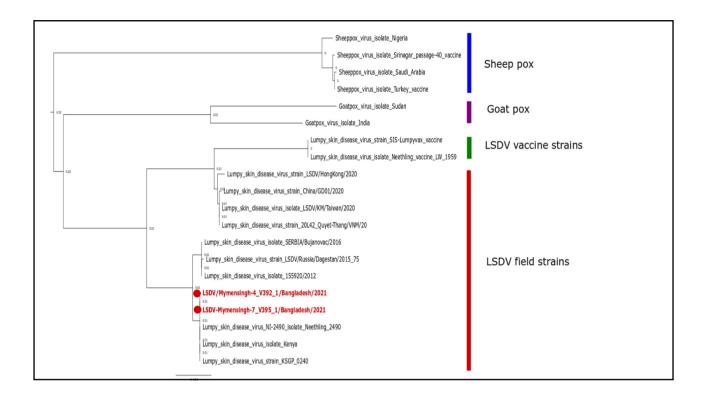


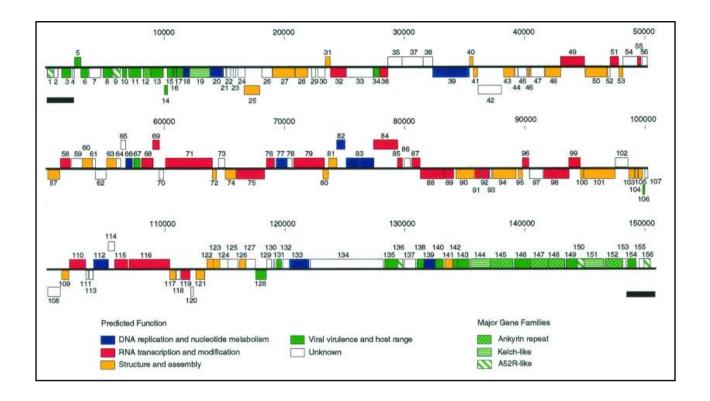

LSD Viral vectors


Invertebrate hosts	Countries/Regions	References	
Ticks			
Rhipicephalus appendiculatus	South Africa	[<u>9</u> – <u>12</u>]	
Amblyomma hebraeum	South Africa	[<u>9</u> – <u>11</u> , <u>13</u> – <u>15</u>]	
Rhipicephalus decoloratus	South Africa	[<u>13</u> , <u>15</u>]	
Glimpses	•		
Haematopota spp.	South Africa	[16]	
Flies			
Stomoxys calcitrans	Belgium, Egypt	[<u>16</u> , <u>17</u>]	
Mosquitoes			
Aedes aegypti	Egypt	[18]	
Anopheles stephensi	Egypt	[17]	
Culex quinquefasciatus	Egypt	[17]	
Culicoides nubeculosus	Egypt	[<u>19</u>]	

Current situation

- Geographical distribution & Latest situation in our region
- LSD is currently endemic in most of Africa, parts of the Middle East and Turkey. Since 2015, the disease has spread to most of the Balkan countries, the Caucasus and the Russian Federation, where the disease continues to spread, making the risk of an imminent incursion into other unaffected countries very high. Since 2019, several outbreaks of LSD have been reported by Members in Asia (Bangladesh, India, China, Chinese Taipei, Vietnam, Bhutan, Hong Kong (SAR-RPC), Nepal, Sri Lanka, Myanmar, Indonesia Malaysia, Thailand- as of 02/6/2021).

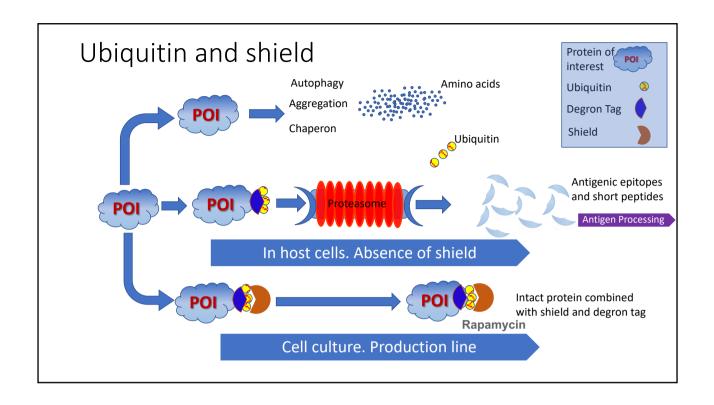


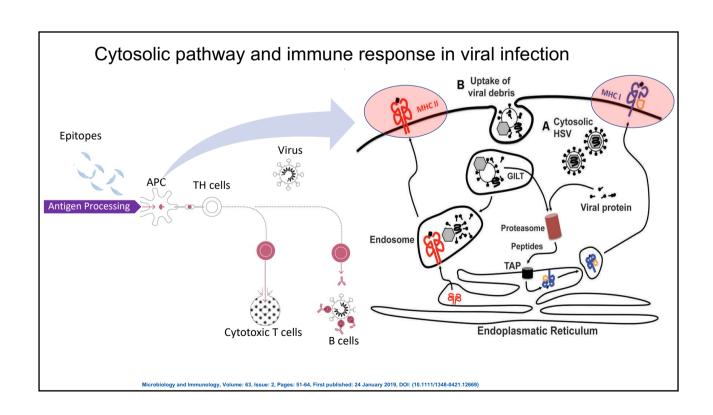

Vaccination

- Live attenuated LSDV vaccines (Neethling vaccines) is the only homologues LSD vaccine
- 80 percent vaccination coverage will break the circulation of the virus in a population
- Regional vaccination campaigns should be preferred to ring vaccination.
- Antigenic homology to LSD
 - SPPV and GTPV vaccines are suitable for the areas where outbreaks are in with LSDV
 - LSD shared 97% identity in the nucleotide sequences with SPPV and GTPV genome
 - Gorgan GTPV is a good alternative in those countries where GTP and LSD overlap (Kazakhstan and Germany)
 - Heterologous immunity always provide less effective protection

Post vaccination monitoring and DIVA

- The ID-Vet antibody ELISA was as specific as the SNT, and therefore, they concluded that this ELISA provides an excellent tool for rapid and simple serological examination of LSDV-vaccinated or infected cattle.
- No Differentiation of Infected from Vaccinated Animals (DIVA) vaccines have been developed against LSD.
- University of Adelaide and BRIN Indonesia
 - DIVA test development project (ACIAR research fund)


Target genes for Degron Tag attenuation


- KITH_SHEVKThymidine kinase (EC 2.7.1.21)
- VFUS_SHEVKPutative fusion protein (Protein HM2)
- <u>A28_SHEVK</u>Envelope protein A28 homolog (Protein HM3)
- <u>J1_SHEVK</u>Protein J1 homolog (Protein F7)
- <u>VQ3L_SHEVK</u>G-protein coupled receptor homolog Q2/3L
- VT4_SHEVKT4 protein
- VT3C_SHEVKT3C protein
- VHR2_SHEVKProbable host range protein 2
- PAP1_LSDVNPoly(A) polymerase catalytic subunit (EC 2.7.7.19) (Poly(A) polymerase large subunit) (PAP-L)
- <u>A28_LSDVN</u>Envelope protein A28 homolog (Protein LSDV118)
- VHR2_LSDVNProbable host range protein 2
- VT4_SHEVNT4 protein
- <u>B14_SHEVN</u>Protein B14 homolog (Protein T3A)
- LAP LSDVE3 ubiquitin-protein ligase LAP (EC 2.3.2.27) (Leukemia associated protein) (LAP) (RING-type E3 ...

Cell culture for vaccine production

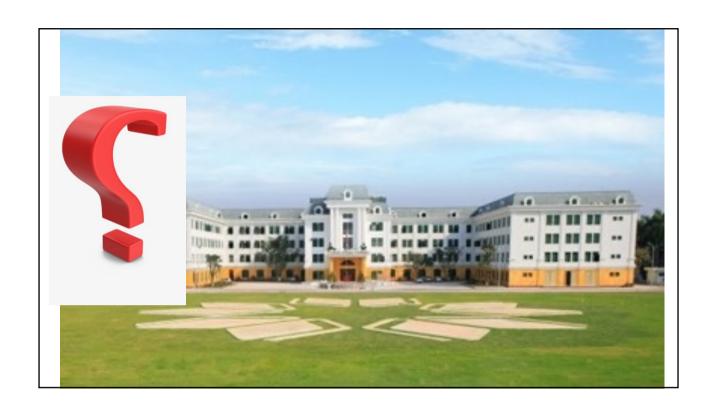
- CAM
- Primary skin fibroblast cells
- MDBK
- GEEP
 - For maintenance and production.

Ubiquitination and Proteasome Ub Ub Ub Amino acids Ubiquitin (Ub) Ub Ub E1, E2, E3 ATP ATP Protein ADP Antigen resentation 26S Proteasome (3 N-terminal Thr proteases) © 2011 American Association for Cancer Research **CCR Molecular Pathways**

Internation collaboration on LSD and ASF vaccines in Vietnam, Indonesia and Thailand

Acknowledgements

- The University of Adelaide
- NHMRC, Australia
- NIH, USA
- University of Illinois
- Indonesian National Research and Innovation Agency (BRIN), Indonesia
- Navetco vaccine production company, Vietnam
- King Mongkut's University of Technology Thonburi, Thailand
- Pasouk vaccine and knowledge-based company, Iran



10. MICRORNA PROFILE AND LEVELS IN COLOSTRUM AND CALF BLOOD BEFORE AND AFTER RECEIVING DIFFERENT COLOSTRUM SOURCES

DR. DO THI HUE THE UNIVERSITY OF ADELAIDE AUSTRALIA

11. PLANT EXTRACT-LOADING FE3O4 NANOSYSTEMS TO INHIBIT VIRUSES FOR SUSTAINABLE LIVESTOCK PRODUCTION

LE THI THU HUONG VIETNAM NATIONAL UNIVERSITY OF AGRICULTURE

VIETNAM NATIONAL UNIVERSITY OF AGRICULTURE

INTERNATIONAL CONFERENCE ON TRANSFORMATION TO SUSTAINABLE LIVESTOCK PRODUCTION

Plant extract-loading Fe₃O₄ nano systems to inhibit viruses for sustainable livestock production

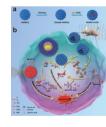
Le Thi Thu Huong

lethithuhuong@vnua.edu.vn

Hanoi, October 2025

1 Introduction	
Materials and Methods	
Results and Discussion	
4 Conclusion	

High pathogenicity avian influenza Situation report 73, WOAH. 7/2025

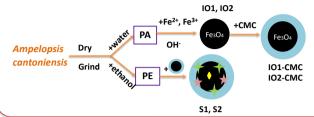

	Outbreaks				
	Domestic pigs	Wild boar	Domestic pigs	Wild boar	Domestic pigs
Africa	863	6	119,823	0	113,917
Americas	65	0	467	0	9,412
Asia	6,452	108	315,137	541	558,242
Europe	4,946	24,174	610,593	37,912	1,512,335
Oceania	0	0	0	0	C
Total	12,326	24,288	1,046,020	38,453	2,193,906

African swine fever Situation report 68, WOAH, 8/2025

Research approaches

➤ Fe₃O₄ nanoparticles:

- drug delivery system
- Inductive heating: thermal treatment + active release
- Antiviral activity

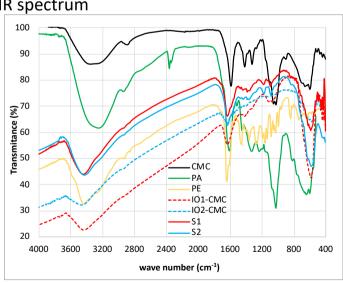


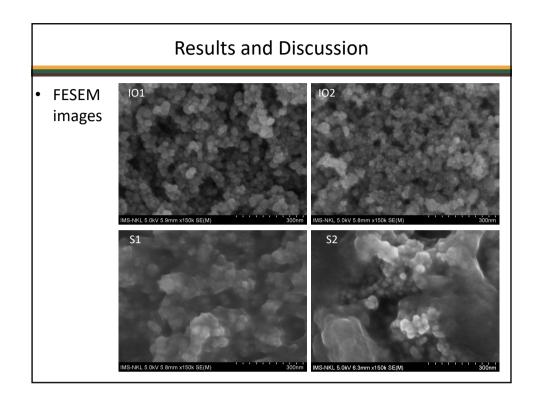
➤ Plant extract

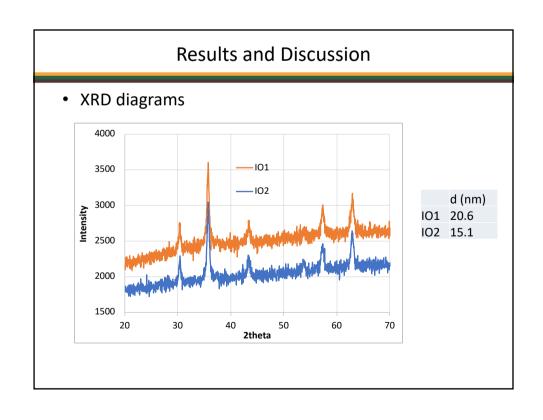
- Stabilizer
- Antiviral activity

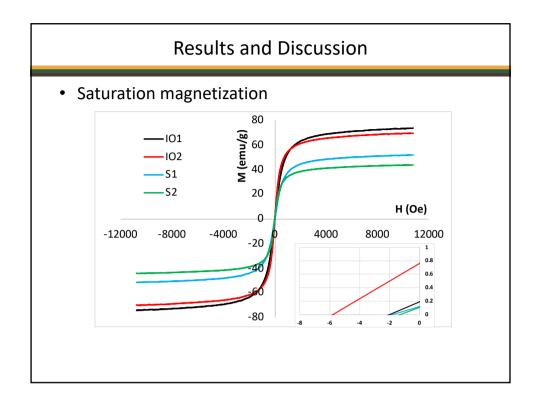
Materials and Methods

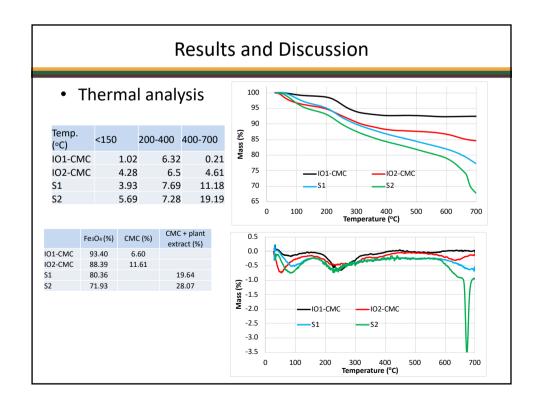
Synthesis of the Fe₃O₄-plant extract nanosystems

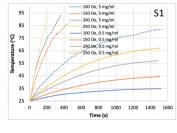


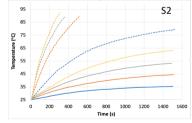

Characterization: FTIR, XRD, FESEM, TGA, VSM, inductive heating, passive and active drug release

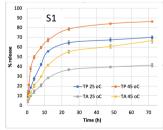

In vitro antiviral activity: H5N1 (MDCK), ASFV (PAM) at 25 and 45 °C

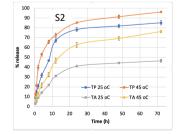

Results and Discussion

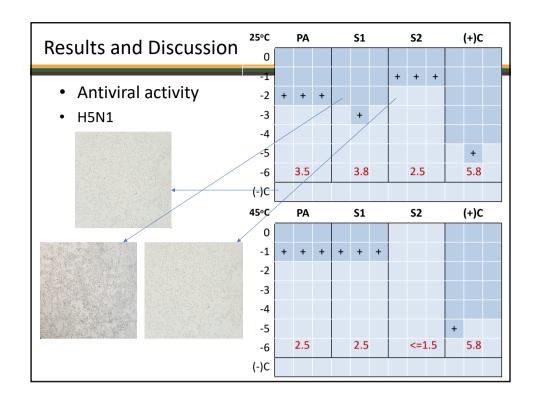

• FTIR spectrum

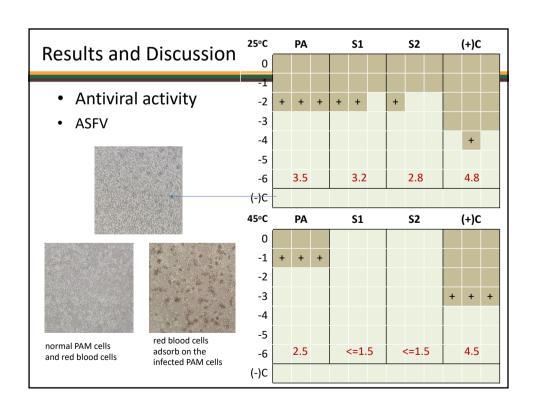

Results and Discussion


• Loading content


Sam ple	M _s (emu/g)	LC (%) calculated from TGA	LC (%) (calculated from DHM)	EE (%) (calculated from DHM)
IO1	73.9			
102	70.0			
S1	51.7	13.04	11.5 ± 0.4	61.0 <u>+</u> 1.0
S2	44.1	16.46	15.7 ± 0.5	73.5±1.5


Results and Discussion


• Magnetic inductive heating curves and drug release



Conclusion

- Successfully synthesize Fe₃O₄ nanoparticles (IO1: 20.6 nm, IO2 15.1 nm)
- Successfully synthesize Fe₃O₄-plant extract nanosystems (S1, S2)
- S1 with larger core shows higher Ms, better inductive heating effect but loads lower amount of plant extract than S2
- S1 and S2 show comparable anti-H5N1 and -ASFV activities with the pure extract. S2 better reduces the virus titer than S1
- High temperature induces higher antiviral activity of both S1 and S2.

Fe₃O₄-plant extract nanosystems are potential in antiviral applications.

Acknowledgement

I would like to thank the Postdoctoral Scholarship Programme of Vingroup Innovation Foundation (VINIF)

Grant number: VINIF.2024.STS.29

Thank you for your listening!	

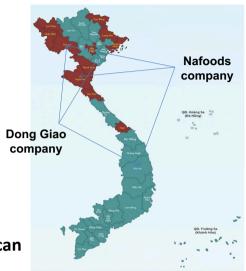
12. FERMENTATIVE AND NUTRITIVE QUALITY OF FRUIT BY-PRODUCT SILAGE

DINH THI YEN
VIETNAM NATIONAL UNIVERSITY OF AGRICULTURE,
PHD STUDENT AT UNIVERSITAS GADJAH MADA,
INDONESIA

FERMENTATIVE AND NUTRITIVE QUALITY OF FRUIT BY PRODUCT SILAGE

Presented by: Dinh Thi Yen PhD student, UGM, Indosinesia

MAIN CONTENTS

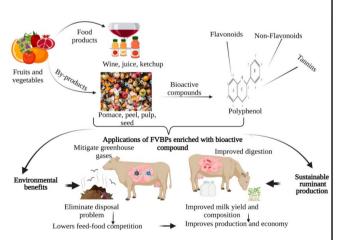

- 1. Introduction
 - 2. Materials and Methods
 - 3. Results and Discussion
- 4. Conclusion

HVN Học viện Nông nghiệp Việt Nam

Introduction

- ❖The number of cattle herds increase due to the growing demand for protein-based food sources →The demand for cattle feed is rising as well →need cheap, efficient food sources.
- ❖Vietnam is a country that produces many kinds of fruits. In the production process, many fruit by-products are created →Pressure on the environment

→If properly utilized, these by - products can transform waste into opportunities



HVN Học viện Nông nghiệp Việt Nam

Introduction

01

- ☐ These by-products are highly valuable for ruminant animals
- □ Carbohydrate (6 64%), protein (10 24%), vitamins and minerals, bioactive compound and rich in fiber → Vegetable and fruit by-products are a potential feed source for ruminants

HVN Học viện Nông nghiệp Việt Nam

Introduction

Fruit by-products

- ☐ High moisture (>80%)
- ☐ Fruit by-products in processing plants include many types
- ☐ Limited seasonal availability

Processing method: Mix seasonal fruit by-products

+ Dry + Silage

- ✓ The drying method is effective, but it causes high production costs
- ✓ With the goal of utilizing a mix of by-products from processing plants and reducing feed production costs, the silage method is highly suitable

0.3

Research Objectives

- ❖ General objective: Evaluation of fermentation quality and nutritional value of fruit silage used in beef cattle farming.
- **Specific objectives:**
- ✓ 1. Determine chemical composition (DM, CP, EE, NDF, ADF...)
- ✓ 2. Evaluation of fermentation parameters (pH, lactic acid, NH₃-N...)
- √ 3. Compare nutritional values between compost recipes.

Materials and Methods

- □ Location: Experiment conducted at the laboratory of the Faculty of Animal Husbandry
- ☐ **Time**: From May to October in year 2025
- □ **Objective**: To evaluate the fermentation quality and nutritional value of fruit silage by-products.
- ☐ **Design**: Completely randomized, 4 fermentation formulas, 3 replications.

H\

Materials and Methods

Silage formulars: 5kg of mixture will be put in the plastic box,

- In the summer-autumn season, the proposed silage formulas are as follows:

Treatment 1: 60% pineapple peel + 25% banana peel + 15% dried rice straw

Treatment 2: 60% pineapple peel + 25% banana peel + 15% dried cassava pulp

Treatment 3: 60% pineapple peel + 25% passion fruit peel + 15% dried rice straw

Treatment 4: 60% pineapple peel + 25% passion fruit peel + 15% dried cassava pulp

Data collection: at 0, 30, 60 and 90 days after make a silage, 300 g of sample will be collected for the analysis of:

- -Fermentation quality: pH, lactic, propionic, acetic, butyric
- -Chemical composition: DM, CP,...
- -Microbial population: Total arobic bacteria, lactic bacterial,

Statistical analysis: Anova one way with formular of silage by SAS (9.4)...

Yij = μ + Fi+ eij where: Yij = all dependent variables; μ = overall mean; Fi = the effect of silage formular (i = 4); eij = random error. Differences among treatments were investigated by Duncan test at P < 0.05.

Results and discussion

Table 1. Chemical composition of feed ingredients before silage(Mean)

By-products of processing plants									1 Other ingredients		
Indicators	Pineapple peel	passion fruit peel	banana peel	fresh vegetable soybean peel	Sweet corn cob	Sweet corn stalks	Mango Peel		dried rice straw	dried cassava pulp	
DM	19.51ª	12.20 ^c	11.56 ^c	17.6 ^b	18.83ª	19.29ª	18.54 ^{ab}	0.24	87.20	87.89	
СР	4.23 ^c	9.55ª	8.14 ^b	5.54 ^c	8.26 ^{ab}	5.86 ^c	3.65 ^c	0.29	7.01	2.21	
EE	0.42 ^c	0.85 ^c	5.55ª	0.82 ^c	2.69 ^b	0.83 ^c	0.86 ^c	0.26	1.37	0.38	
Ash	3.11 ^c	8.26 ^b	12.03ª	7.80 ^b	2.39 ^c	2.73 ^c	2.12 ^c	0.28	11.29	3.06	
NDF	60.68ª	40.31 ^d	12.54 ^f	60.21 ^a	44.91 ^c	57.55 ^b	16.53e	0.48	60.79	45.76	

Results and discussion

Table 2. Some physical characteristics of silage

	ph	ysical characteristic	S	
Treatment	30 days	60 days	90 days	
Treatment 1	3	2.58 ^b	2.75	
Treatment 2	3	2.75 ^{ab}	2.75	
Treatment 3	3	2.91 ^{ab}	2.75	
Treatment 4	3	3.00ª	2.83	
SEM	0	0.06	0.04	

Treatment 1: 60% pineapple peel, 25% banana peel, 15% dry straw;

Treatment 2: 60% pineapple peel, 25% banana peel, 15% cassava residue;

Treatment 3: 60% pineapple peel, 25% passion fruit peel, 15% dry straw;

Treatment 4: 60% pineapple peel, 25% passion fruit peel, 15% cassava residue.

Treatment	DM	CP	EE	CF	NDF	ADF	ADL	Ash	Sugar	ОМ	Treatment 1: 60% pineapple
				0 0	lay						peel, 25% banana peel, 15%
Treatment 1	25,15 ^b	7,09ª	3,67ª	23,23 ^b	47,13 ^b	23,25ª	4,48	10,08ª	12,34	61,47ª	dry straw;
Treatment 2	27,05ª	3,91 ^c	0,76 ^c	25,76ª	39,91 ^d	22,72 ^b	4,13	4,74 ^b	10,11	38,33 ^b	
Treatment 3	24,45 ^b	6,67ª	1,08 ^b	22,23 ^c	48,26ª	24,67ª	4,01	9,52ª	9,63	50,71ª	Treatment 2: 60% pineapple peel, 25% banana peel, 15%
Treatment 4	24,71 ^b	4,71 ^b	0,47 ^d	20,77 ^d	42,31°	29,70ª	4,38	4,67 ^b	6,69	68,18ª	cassava residue;
SEM	0,17	0,11	0,05	0,15	0,16	0,55	0,42	0,18	0,43	7,01	
Treatment	DM	СР	EE	CF	NDF	ADF	ADL	Ash	Sugar	ОМ	Treatment 3: 60% pineapple peel, 25% passion fruit peel,
				30	days						15% dry straw;
Treatment 1	26,24ª	7,53ª	2,15ª	23,72°	52,36ª	27,93 ^b	3,34 ^b	11,11ª	1,17 ^b	135,17	
Treatment 2	22,13 ^{bc}	4,95 ^b	1,91 ^b	22,34 ^d	39,78c	26,69 ^b	5,90ª	6,14 ^c	1,67 ^b	178,06	Treatment 4: 60% pineapple peel, 25% passion fruit peel,
Treatment 3	22,10 ^c	7,78ª	0,95°	28,22ª	54,04ª	31,19ª	5,04a ^b	10,13 ^b	1,38 ^b	156,01	15% cassava residue.
Treatment 4	23,87 ^b	5,83 ^b	0,47 ^d	25,51 ^b	41,82 ^b	27,54 ^b	4,25a ^b	5,15 ^d	2,69ª	182,42	
SEM	0,39	0,31	0,04	0,16	0,39	0,42	0,38	0,08	0,19	16,06	HVN Học viện Nông nghiệp Việt Nan

Treatment	DM	CP	EE	CF	NDF	ADF	ADL	Ash	Sugar	ОМ	Treatment 1: 60% pineapp
				60	days						peel, 25% banana peel, 15
Treatment 1	25,95ª	7,99ª	2,35 ^b	23,93 ^b	52,13 ^b	30,49 ^{ab}	4,49 ^b	11,37ª	1,49 ^b	138,77 ^b	dry straw;
Freatment 2	17,16 ^c	6,10 ^b	2,95ª	20,56 ^c	41,33 ^c	27,52 ^c	5,92ª	8,45°	1,74 ^b	229,94ª	
Treatment 3	23,47 ^b	5,56 ^{bc}	1,17°	26,43ª	55,10ª	31,63ª	4,81 ^{ab}	10,54 ^b	1,77 ^b	139,69 ^b	Treatment 2: 60% pineapp peel, 25% banana peel, 15
Treatment 4	24,50 ^b	5,26 ^c	0,46 ^d	24,61 ^b	40,17 ^c	29,27 ^b	5,45 ^{ab}	5,32 ^d	5,38ª	176,60 ^{ab}	cassava residue;
SEM	0,26	0,14	0,03	0,22	0,36	0,37	0,34	0,09	0,35	16,04	
Treatment	DM	СР	EE	CF	NDF	ADF	ADL	Ash	Sugar	ОМ	Treatment 3: 60% pineapple peel, 25%
¥				90	days						passion fruit peel, 15% dry
Treatment 1	21,24 ^c	8,02ª	3,83ª	23,28	48,31 ^b	28,22	5,67 ^b	12,31ª	1,27 ^b	175,83	straw;
Treatment 2	21,38°	5,69 ^b	2,71 ^b	21,27	40,38°	28,04	7,96ª	6,74 ^c	3,30ª	197,84	Treatment 4: 60%
Treatment 3	25,34ª	8,03ª	1,20°	27,41	52,32ª	29,66	4,39°	10,32b	1,86 ^b	144,06	pineapple peel, 25% passion fruit peel, 15%
Treatment 4	23,63 ^b	5,17 ^c	0,45 ^d	25,35 ^t	41,32°	30,14	6,93ª	5,03 ^d	4,50ª	194,88	cassava residue.
SEM	0,23	0,08	0,07	0,18	0,28	0,78	0,26	0,11	0,28	15,00	

Fermentation	Treatment	NH ₃ -N					Fermentation	Treatment	NH ₃ -N					
time (days)		(%)		Organic ad	cids (g/kg DN	∕ 1)	time (days)		(%)	Organic acids (g/kg DM)				
			Lactic	Acetic	Propionic	Butyric				Lactic	Acetic	Propionic	Butyric	
			acid	acid	acid	acid				acid	acid	acid	acid	
	Treatment 1	2.54	19.07ª	13.87 ^{ab}	n.d	7.25ª	077	Treatment 1	5.60 ^c	19.83ª	18.90	n.d	7.15ª	
	Treatment 2	n.d	19.30ª	17.43ª	n.d	2.99bc		Treatment 2	9.11ª	19.57ª	19.13	n.d	3.28 ^b	
30 days	Treatment 3	n.d	15.67 ^b	12.37 ^{bc}	n.d	5.49 ^{ab}	60 days	Treatment 3	7.81 ^{ab}	15.00 ^b	13.83	n.d	6.23ª	
	Treatment 4	1.10	15.47 ^b	16.60ª	n.d	3.34 ^b		Treatment 4	3.94 ^d	14.50 ^b	15.77	n.d	2.39 ^b	
	SEM		0.70	0.91		0.61		SEM	0,33	0.72	2.27		0.50	
Fermentation	Treatment	NH ₃ -N					Trea	atment 1: 6	0% pin	eapple	peel. 2	5% banan	a peel	
time (days)		(%)	(Organic ac	ids (g/kg DN	1)		Treatment 1: 60% pineapple peel, 25% banana peel, 15% dry straw;						
		,	Lactic	Acetic	Propionic	Butyric	Trea	atment 2: 6	0% pin	eapple	peel, 2	5% banan	а	
			acid	acid	acid	acid	pee	l, 15% cassa	iva resi	due;	. ,			
	Treatment 1	4.44 ^b	19.10 ^a	17.60	n.d	8.41ª	Trea	atment 3: 6	niq %0	eapple	peel. 2	5% passio	n fruit	
	CONTRACTOR CONTRACTOR	1.12 ^c	16.70 ^{ab}	17.60	n.d	2.55 ^c		l, 15% dry s	•	-	, -			
	Treatment 2				n.d	5.21 ^{bc}	_		00/ -:-				٠.	
90 days	Treatment 2 Treatment 3	5.41 ^{ab}	15.60ab	13.27	ii.u	97515-E33	Tre	atment 4: 6	บ‰ กเก	eannie	neel /	'5% ทลรรเด	n trilit	
90 days		5.41 ^{ab} 5.96 ^a	15.60 ^{ab}	13.27 16.67	n.d	2.64 ^c		atment 4: 6 el, 15% cassa	•		peei, 2	5% passio	n fruit	

Table 5.	nН	value	of silage	formulations	(Mean)
Iabic J.	$\boldsymbol{\nu}$	value	UI JIIGEC	IUIIIIIIIIIIIIII	livicaii <i>i</i>

	pH value							
Treatment	30 days	60 days	90 days					
Treatment 1	4.05 ^c	4.13 ^b	4.23 ^d					
Treatment 2	4.22ª	4.56ª	4.51 ^b					
Treatment 3	4.15 ^b	4.50ª	4.37 ^c					
Treatment 4	4.26ª	4.68ª	4.70 ^a					
SEM	0.01	0.06	0.02					

Treatment 1: 60% pineapple peel, 25% banana peel, 15% dry straw;

Treatment 2: 60% pineapple peel, 25% banana peel, 15% cassava residue;

Treatment 3: 60% pineapple peel, 25% passion fruit peel, 15% dry straw;

Treatment 4: 60% pineapple peel, 25% passion fruit peel, 15% cassava residue.

Fermentation time (days)	Treatment	Indicators									
	,	Total aerobic bacteria log10	LAB log10	Yeast log10	Mold log10	Bacillus log10	Clolotridium log10				
	Treatment 1	4.29	3.69	2.53	n.d	3.72	n.d				
	Treatment 2	4.30	3.33	n.d	n.d	3.61	n.d				
30 days	Treatment 3	4.23	3.48	n.d	n.d	3.37	n.d				
	Treatment 4	4.04	3.37	n.d	n.d	3.50	n.d				
	SEM	0.71	0.23			0.29					
Fermentation time (days)	Treatment			Indica	tors						
	80	Total aerobic bacteria log10	LAB log10	Yeast log10	Mold log10	Bacillus log10	Clolotridium log10				
	Treatment 1	4.74	3.31	n.d	n.d	4.60	1.77				
8	Treatment 2	4.58	3.04	n.d	n.d	4.49	1.94				
60 days	Treatment 3	4.78	3.09	n.d	n.d	4.55	1.77				
	Treatment 4	4.62	3.00	n.d	n.d	4.48	n.d				
8	SEM		0.21			0.27	0.23				

Treatment 1: 60% pineapple peel, 25% banana peel, 15% dry straw;

Treatment 2: 60% pineapple peel, 25% banana peel, 15% cassava residue;

Treatment 3: 60% pineapple peel, 25% passion fruit peel, 15% dry straw;

Treatment 4: 60% pineapple peel, 25% passion fruit peel, 15% cassava residue.

Table 6. Microbial composition of silage (Mean)	Tab	le 6.	Micro	bial	com	position	of s	ilage ((Mean))
---	-----	-------	-------	------	-----	----------	------	---------	--------	---

Fermentation time (days)	Treatment			ors			
		Total aerobic bacteria log10	LAB log10	Yeast log10	Mold log10	Bacillus log10	Clolotridium log10
	Treatment 1	4.56	2.94	n.d	n.d	4.52	n.d
	Treatment 2	4.78	2.91	n.d	n.d	4.09	1.72
90 days	Treatment 3	4.00	2.93	n.d	n.d	4.01	n.d
	Treatment 4	4.30	2.79	n.d	n.d	4.25	n.d
	SEM		0.12			0.24	0.20

Treatment 1: 60% pineapple peel, 25% banana peel, 15% dry straw;

Treatment 2: 60% pineapple peel, 25% banana peel, 15% cassava residue;

Treatment 3: 60% pineapple peel, 25% passion fruit peel, 15% dry straw;

Treatment 4: 60% pineapple peel, 25% passion fruit peel, 15% cassava residue.

Conclusion

- ❖ Fruit by-products (pineapple peel, banana peel, passion fruit peel, cassava pulp...) have good nutritional value, rich in carbohydrates, vitamins, minerals and fiber a potential source of raw materials for beef cattle farming.
- Silage method helps preserve by-products effectively, reduces feed production costs and limits environmental pollution.

❖ The analysis results show:

- ✓ Good fermentation quality: reduced pH, high lactic acid content, low NH₃–N.
- ✓ Stable nutritional value: DM, CP, NDF and ADF content suitable for beef cattle rations.
- ✓ The combination of 60% pineapple peel + 25% passion fruit peel + 15% dried cassava pulp gives optimal fermentation and nutritional results.

HVN Học viện Nông nghiệp Việt Nam

HIGHER EDUCATION PROGRAM FOR 'VIETNAM NATIONAL UNIVERSITY OF AGRICULTURE' TO ENHANCE HUMAN RESOURCES SPECIALIZED IN ANIMAL HUSBANDRY OF VIETNAM

CHƯƠNG TRÌNH NÂNG CAO NĂNG LỰC ĐÀO TAO CHO 'HOC VIỆN NÔNG NGHIỆP VIỆT NAM' NHẮM NÂNG CAO NGUỒN NHÂN LỰC NGÀNH CHĂN NUÔI VIỆT NAM

PROJECT DATE

THỜI GIAN THỰC HIỆN

2021 - 2030

BUDGET NGÂN SÁCH DƯ ÁN

million triệu USD

SPONSOR NHÀ TÀI TRƠ KOICA The Korean government Chính phủ Hàn Quốc

SUPERVISING AGENCY

CƠ QUAN CHỦ QUẢN

BỘ NN & PTNT

PROJECT OWNER & PROJECT IMPLEMENTATION LOCATION

CHỦ DƯ ÁN & ĐIA ĐIỂM THỰC HIỆN DỰ ÁN **VNUA**

Học viên Nông nghiệp Việt Nam

Livestock Law & Policy

Cải tiến giáo dục bậc đại học thông qua tư vấn thể chế chính sách ngành chẳn nuôi

Strengthening Capabilities

Nâng cao năng lực cho giảng viên, cán bộ ngành chẳn nuôi và nhân viên các cơ quan liên quan

Curriculum & Environment Improvement

Cải thiện chương trình giảng dạy và môi trường đào tạo, môi trường phòng thí nghiệm

OD4

Start-up & Employment

Hỗ trợ sinh viên trong lĩnh vực khởi nghiệp, tìm kiếm việc làm và kích hoạt liên kết giữa trường đại học và doanh nghiệp

Vietnam-Korea Livestock

Higher Education Research Institute (VKLI) Thành lập Viện Nghiên cứu Đào tạo Chăn

nuôi Việt Nam - Hàn Quốc (VKLI)

More Information at www.vkli.vnua.edu.vn

Address: CREI RM 110-111, VNUA Địa chỉ : P.110-111, TT NCXS & ĐMST, Học viện Nông nghiệp Việt Nam

KHOA CHĂN NUÔI

Faculty of Animal Science

Trâu Quỳ - Gia Lâm - Hà Nội **(**0243) 827 6653

TRÌNH ĐỘ ĐÀO TẠO

Tiến sĩ (3 năm): Chăn nuôi

Đại học (4 năm): Chăn nuôi thú v

CƠ HỘI VIỆC LÀM

- Giảng viên
- Cán bộ nghiên cứu
- Cán bộ kỹ thuật
- Chuyên gia kỹ thuật
- Tư khởi nghiệp

Cán bộ quản lý

Nhân viên kinh doanh

HỢP TÁC QUỐC TẾ

Giống và công nghệ chăn nuôi

Thức ăn và sản phẩm chăn nuôi

Các hợp chất sinh học trong chăn nuôi

- Nhiều đề tài nghiên cứu cấp Quốc gia, Bộ, Tỉnh, Quốc tế
- Xuất bản nhiều bài báo quốc tế và trong nước

6 Bộ môn

- Sinh học động vật
- Hóa sinh đông vật
- Chăn nuôi chuyên khoa
- Di truyền Giống vật nuôi
- Dinh dưỡng và thức ăn chăn nuôi
- Sinh lý và tập tính động vật
- Đội ngũ cán bộ

52 cán bộ:

- 31 giảng viên (02 Giáo sư, 08 Phó Giáo sư, 16 TS, 03 NCS, 02 ThS)
- 21 cán bộ hỗ trợ

- Nhiều dự án quốc tế trong đào tạo và nghiên cứu khoa học
- Tiêu biểu: Dự án Việt Bỉ (từ năm 1997 đến nay); Dự án KOICA, Hàn Quốc (từ năm 2021 đến 2030)
- Trao đổi sinh viên quốc tế (Đan Mạch, Canada, Hàn quốc, Nhật Bản, Thái Lan, Indonesia,...

CƠ SỞ VẬT CHẤT

6 phòng thực hành chuyên môn

3 phòng nghiên cứu trọng điểm

- Phòng thí nghiệm trung tâm đạt chứng chỉ ISO/IEC 17025:2017
- Phòng nghiên cứu di truyền động vật

Trung tâm

- Trung tâm nghiên cứu liên ngành và PTNN
- · Trung tâm giống vật nuôi chất lượng cao

Mô hình nghiên cứu

- Mô hình chăn nuôi lợn, gà, dê, thỏ
- Mô hình vườn cỏ

KOICA – VNUA PROJECT

2025 INTERNATIONAL CONFERENCE TRANSFORMATION TO SUSTAINABLE LIVESTOCK PRODUCTION

KOICA-VNUA PROJECT

INTERNATIONAL CONFERENCE

TRANSFORMATION TO SUSTAINABLE LIVESTOCK PRODUCTION 2025

admin@kuvec.kr

www.vkli.vnua.edu.vn

+8424-6688-2467

Vietnam-Korea Livestock
Higher Education Research Institute(VKLI)

CREI RM. 110-111,
Vietnam National University of Agriculture